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Abstract In this paper, we present a new inertial iterative algorithm for solving split variational in-

clusion problems in real Hilbert spaces. The strong convergence is proved under standard conditions.

In applications, the proposed iterative algorithm is applicable to the iterative methods for solving split

feasibility and split minimization problems. Additionally, we present numerical experiments with some

examples to illustrate the convergence performance of the proposed algorithm in comparisons with some

existing approaches in the literature. Finally, we concluded that the proposed algorithm is faster and

more efficient than some existing ones.
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1. Introduction

Let H1 and H2 be two real Hilbert spaces with inner product ⟨·, ·⟩ and the induced
norm ∥·∥. Let B1 : H1 → 2H1 and B2 : H2 → 2H2 be two multivalued maximal monotone
mappings. Let A : H1 → H2 be a bounded linear operator. Based on the result of Censor
et al. [7], Moudafi [20] firstly introduced the following split variational inclusion problem:

Find x∗ ∈ H1 such that 0 ∈ B1(x
∗) (1.1)

and Ax∗ ∈ H2 such that 0 ∈ B2(Ax
∗). (1.2)

The set of all solutions to (1.1) is denoted by B−1
1 (0) = {x∗ ∈ H1 : 0 ∈ B1(x

∗)}, while
the set of all solutions to (1.2) is denoted by B−1

2 (0) = {Ax∗ ∈ H2 : 0 ∈ B2(Ax∗)}.
Furthermore, the set of all solutions to the problem (1.1) - (1.2) is denoted by Ω, that
is, Ω = {x∗ ∈ H1 : x∗ ∈ B−1

1 (0) and Ax∗ ∈ B−1
2 (0)}. It is known that the problem (1.1)

- (1.2) contains several special cases, including the split variational inequality problem,
the split feasibility problem, the split zeroes problem, and the split common fixed point
problem, among others. Furthermore, the problem (1.1) - (1.2) can be written as fixed

point equations: x∗ = JB1

λ (x∗) and Ax∗ = JB2

λ (Ax∗), where λ > 0 is a parameter, and

JB1

λ and JB2

λ are the resolvent operators defined by JBi

λ (x) = (I+λBi)
−1(x) for i = {1, 2},

where I is the identity operator on H1 and H2, respectively. Note that the problem (1.1)
is a classical variational inclusion problem:

Find x∗ ∈ H1 such that 0 ∈ B1(x
∗). (1.3)

A well known classical method for solving the problem (1.3) is called a proximal point
method which was first introduced by Martinet [18] and further extended by Rockafellar
[24]. To improve the convergence rate of sequence, Alvarez and Attouch [2] applied an
idea of the heavy ball method introduced by poyak [23] into the proximal point method
for solving (1.3) as follows: Choose arbitrary x0, x1 ∈ H1 and set λn > 0, compute {xn}
as follows:{

wn = xn + θn(xn − xn−1),

xn+1 = JB1

λn
(wn) ,

(1.4)

where wn = xn + θn(xn − xn−1) represents the so called inertial step. It was shown that,
if {θn} ⊆ [0, 1) satisfies

∑∞
n=1 θn∥xn − xn−1∥2 < ∞, then the sequence {xn} generated

by (1.4) converges weakly to a zero of B1.
The inertial effect is usually incorporated into an algorithm for the purpose of speeding

up the iteration process. Several studies have shown that iterative algorithms for solving
nonlinear problems that incorporate the inertial step have better numerical performance in
terms of number of iterations and CPU time compared to their non-inertial counterparts.
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For instance, it was shown via numerical experiments that (1.4) and other associated
methods, such as [11, 15], have significantly improved the effectiveness of their non-
inertial algorithms, that is, when θn = 0. Interested readers can also refer to the inertial
iterative methods in [21, 22] for solving the SVIP (1.1) - (1.2).

On the other hand, Byrne et al. [5] introduced the following iterative algorithm, based
on the proximal point algorithm, in order to solve the problem (1.1) - (1.2): Choose an
arbitrary x1 ∈ H1 and set λ > 0, compute {xn} as follows:

xn+1 = JB1

λ

(
xn − γA∗

(
I − JB2

λ

)
Axn

)
, (1.5)

where γ ∈ (0, 2
∥A∥2 ) and A∗ denotes the adjoint of A. They showed the weak and strong

convergence theorems of the iterative method (1.5).
Many authors have been inspired by the work of Byrne et al. [5] and have developed

the iterative method for solving the problem (1.1) - (1.2). In this regard, one can refer to
[1, 8, 9, 12, 25, 26] and references therein.

Very recently, Tan and Cho [27] proposed and studied an iterative method for solving
the fixed point problem of nonexpansive mappings. The method comprises of inertial
step and Manntype [17] method. Let C ⊂ H1 be a nonempty closed and convex set and
T : C → C be a nonexpansive mapping. Their proposed algorithm is as follows: Choose
an arbitrary x1, x2 ∈ H1, {δn} ⊆ [a, b] ⊂ (0, 1]. Then compute the following sequences:

wn = xn + θn(xn − xn−1),

yn = (1− βn)wn,

xn+1 = (1− δn)yn + δnTyn,

(1.6)

where {βn} ⊂ (0, 1) satisfies limn→∞ βn = 0 and
∑∞

n=1 βn = ∞. It was shown that, if

a sequence {θn} satisfies lim
n→∞

θn
βn

∥xn − xn−1∥ = 0, then the sequence {xn} generated by

(1.6) converges strongly to a fixed point of T .
Motivated and inspired by the above results, in this article, we give a positive answer

to the following natural questions:

(1) Can we design a strong convergence of inertial iterative method involving an
inertial step as defined in (1.6) together with (1.5) for solving the problem (1.1)
- (1.2)?

(2) Does the incorporated modified inertial step have better numerical performance
than the usual inertial algorithms for solving the problem (1.1) - (1.2)?

In this paper, we propose a new strong convergence for an inertial iterative algorithm
for solving the problem (1.1) - (1.2). We construct and show a strong convergence theorem
for the proposed method in generic Hilbert spaces under certain conditions. Furthermore,
we derive algorithms for solving the split feasibility and split minimization problems from
the proposed algorithm.

The remaining part of this paper is organized as follows: In the next section, we recall
some basic tools, definitions, and useful lemmas that are needed in order to show the
convergence analysis of the proposed method. In Section 3, we present our proposed
algorithm and it’s convergence analysis. In Section 4, we apply our results to the split
feasibility and split minimization problems. In section 5, we perform some numerical
experiments to ensure the validity and efficiency of our proposed algorithm. In the last
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section, we also compare our method with some existing results in the literature. Fur-
thermore, in the same section, we apply our method to recovering sparse and noisy data.

2. Preliminaries

In this section, let H be a real Hilbert space with the inner product ⟨·, ·⟩, the norm ∥ · ∥,
and the identity operator I. Let C be a closed and convex subset of H. The notion
xn ⇀ x is denoted by the weak convergence of {xn} to x, while xn → x is denoted by
strong convergence of {xn} to x.
It is known that for any x, y ∈ H the following are satisfied:

(1) ⟨x, y⟩| ≤ ∥x∥∥y∥; (Cauchy-Schwarz inequality)
(2) ∥x+ y∥2 ≤ ∥x∥2 + ⟨y, x+ y⟩;
(3) ∥x± y∥2 = ∥x∥2 + ∥y∥2 ± 2⟨x, y⟩.

Definition 2.1. Let H be a real Hilbert space and T : H → H be a mapping. Then T
is said to be:

(1) nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥ for all x, y ∈ H;
(2) firmly nonexpansive if ∥Tx− Ty∥2 ≤ ⟨Tx− Ty, x− y⟩ for all x, y ∈ H.

Note that firmly nonexpansive is nonexpansive.

Recall that for every x ∈ H, there exists a unique nearest point in C denoted by PCx
such that ∥x − PCx∥ ≤ ∥x − y∥ for all y ∈ C. The operator PC of H onto C is called
metric projection and is characterized by

⟨x− PCx, y − PCx⟩ ≤ 0, (2.1)

for all x ∈ H and y ∈ C. Furthermore, the operator PC is firmly nonexpansive.
Let B : H → 2H be a multivalued mapping with domain Dom(B) := {x ∈ H : Bx ̸=

∅}. Then B is called maximal monotone if it is monotone, that is,

⟨x− y, u− v⟩ ≥ 0,

for any x, y ∈ H, u ∈ Bx, v ∈ By, and its graph G(B) := {(x, u) ∈ H ×H : u ∈ Bx} is
not properly contained in the graph of any other monotone mapping. For any maximal
monotone B with parameter λ > 0, the resolvent operator is defined by

JB
λ (x) := (I + λB)−1(x)

for all x ∈ H, where I is the identity operator on H. Further, we recall that the
subdifferential, denoted by ∂f , of a proper lower semi-continuous and convex function
f : H → (−∞,∞] is defined by ∂f(x) := {z ∈ H : f(x)− f(y) ≤ ⟨z, x− y⟩,∀y ∈ H} for
all x ∈ H. The indicator function of a nonempty closed convex set C is defined by

iC(x) :=

{
0, x ∈ C;

∞, x ̸= C.

The normal cone of C at x ∈ H is defined by NC(x) := {z ∈ H : ⟨z, y − x⟩ ≤ 0} for
all y ∈ C. Note that the indicator function of C is a proper lower semi-continuous and
convex function on H and its subdifferential is a maximal monotone, and is normal cone,
that is, for each x ∈ C

∂iC(x) = {z ∈ H : ∂iC(x)− ∂iC(y) + ⟨z, y − x⟩ ≤ 0}
= {z ∈ H : ⟨z, y − x⟩ ≤ 0} = NC(x),
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for all y ∈ C. It follows from the face that ∂iC is maximal monotone mapping, so for all
x ∈ H and λ > 0 we have

x∗ = J∂iC
λ (x) ⇔ x ∈ x∗ + λ∂iC(x

∗) ⇔ x− x∗ ∈ λNC(x
∗)

⇔ ⟨x− x∗, y − x∗⟩ ≤ 0 (∀y ∈ C)

⇔ x∗ = PCx. (2.2)

Next, we recall some lemmas useful for the remainder of this paper.

Lemma 2.2. [5, 8] Let H be a real Hilbert space and T : H → H be a nonexpansive
mapping. If xn ⇀ x and (I − T ) → 0, then Tx = x.

Lemma 2.3. [9] Let H be a real Hilbert space, B : H → 2H be a multivalued maximal
monotone, and JB

λ be a resolvent operator of B with λ > 0. Therefore,

(1) (I − JB
λ ) is single-valued and firmly nonexpansive mapping;

(2) Dom(JB
λ ) = H and Fix(JB

λ ) = {x ∈ Dom(B) : 0 ∈ Bx}.

Lemma 2.4. [8] Let H1 and H2 be two real Hilbert spaces, A : H1 → H2 be a linear and
bounded operator with with its adjoint A∗, and B2 : H2 → 2H2 be a multivalued maximal
monotone mapping. Let λn > 0 and {γn} be a sequence of positive real numbers. Then∥∥∥(I − γnA

∗
(
I − JB2

λn

)
A
)
x−

(
I − γnA

∗
(
I − JB2

λn

)
A
)
y
∥∥∥2

≤ ∥x− p∥2 − γn(2− γn∥A∥2)
∥∥∥(I − JB2

λn
)Ax− (I − JB2

λn
)Ay

∥∥∥2
for all x, y ∈ H1.

Lemma 2.5. [30] Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1− βn)sn + βntn + vn, n ≥ 0,

where {βn} ⊂ [0, 1], {tn} ⊂ (−∞,∞), and {wn} ⊂ [0,∞) such that limn→∞ βn = 0,∑∞
n=0 βn = ∞, lim supn→∞ tn ≤ 0, and

∑∞
n=0 vn < ∞. Then limn→∞ sn = 0.

Lemma 2.6. [16] Let {sn} be a sequence of nonnegative real numbers such that there
exists a subsequence {snj

} of {sn} such that snj
< snj+1 for all j ∈ N. Then there exists

a nondecreasing sequence of integers {τ(n)} defined by τ(n) := max{k ≤ n : sk < sk+1}
such that limn→∞ τ(n) = ∞ and the following two properties hold by all (sufficiently
large) numbers n ∈ N:

sτ(n) ≤ sτ(n)+1 and sn ≤ sτ(n)+1.

3. Main Results

In this section, we show our suggested inertial iterative technique for solving the SVIP
(1.1) - (1.2) and we prove that the sequence established by the proposed algorithm has a
strong convergence theorem.

Remark 3.1. It can be seen from Algorithm 1 as follows:

(1) The inertial parameter θn in Algorithm 1 is easy to implement in numerical com-
putation because the value of ∥xn − xn−1∥ is known before choosing θn. One can
choose θn by using the idea of the results in [1, 13, 27, 29].
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Algorithm 1 Modified inertial iterative algorithm for (1.1) - (1.2)

Initialization: Choose arbitrary initial points x0, x1 ∈ H1 and set α > 0, λ > 0 and
{γn} ⊂ [γ∗, γ

∗] ⊂ 1
L , where L = ∥A∥2. Moreover, choose {βn} ⊂ (0, 1) such that

lim
n→∞

βn = 0 and

∞∑
n=1

βn = ∞. (3.1)

Iterative Steps: Calculate {xn+1} as follows:
Step 1: Compute wn = (1− βn)

[
xn + θn(xn − xn−1)

]
, where {θn} ⊂ [0, 1) satisfying

θn =

{
min

{
θ, ϵn

∥xn−xn−1∥

}
if xn ̸= xn−1,

θ otherwise,
(3.2)

while ϵn = ◦(βn) is a positive sequence, i.e., lim
n→∞

ϵn
βn

= 0.

Step 2: Compute xn+1 = JB1

λ (wn + γnA
∗(JB2

λ − I)Awn).
Set n := n+ 1 and go to Step 1.

(2) It can be seen from the expression (3.2) in Algorithm 1 that θn∥xn − xn−1∥ ≤ ϵn
and this implies that

∑∞
n=1 θn∥xn − xn−1∥ < ∞. Therefore,

lim
n→∞

θn
βn

∥xn − xn−1∥ ≤ lim
n→∞

ϵn
βn

= 0. (3.3)

We now present our main strong convergence theorem of the sequence generated by the
proposed algorithm.

Theorem 3.2. Let H1 and H2 be two real Hilbert spaces. Let B1 : H1 → 2H1 and
B2 : H2 → 2H2 be two maximal monotone mappings. Let A : H1 → H2 be a linear
bounded operator with its adjoint A∗. Let Ω be a solution set of the problem (1.1) - (1.2)
and assume that Ω ̸= ∅. Then sequence {xn} generated by Algorithm 1 converges strongly
to a point x∗ ∈ Ω, where x∗ = PΩ(0).

Proof. Let x∗ ∈ Ω. Thus x∗ = JB1

λ x∗ and Ax∗ = JB2

λ (Ax∗). By the definition of {wn},
we get

∥wn − x∗∥ = ∥(1− βn)[xn + θn(xn − xn−1)]− x∗∥
≤ (1− βn) ∥xn − x∗∥+ (1− βn)θn ∥xn − xn−1∥+ βn ∥x∗∥

= (1− βn) ∥xn − x∗∥+ βn

[
(1− βn)

θn
βn

∥xn − xn−1∥+ ∥x∗∥
]
. (3.4)

It can be deduced from (3.3) that there exists a constant K1 > 0 such that (1 −
βn)

θn
βn

∥xn − xn−1∥ ≤ K1 for all n ∈ N. Thus, we obtain from (3.4) that

∥wn − x∗∥ ≤ (1− βn)∥xn − x∗∥+ βnK2, (3.5)

where K2 := K1 + ∥x∗∥. From Lemma 2.4 and definition of {γn} we have

∥xn+1 − x∗∥2 ≤ ∥wn − x∗∥2 − γn(1− γnL)
∥∥∥(JB2

λ − I)Awn

∥∥∥2 (3.6)

≤ ∥wn − x∗∥2. (3.7)
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This implies that

∥xn+1 − x∗∥ ≤ ∥wn − x∗∥. (3.8)

Next, by combining (3.5) with (3.8) and by induction we obtain

∥xn+1 − x∗∥ ≤ (1− βn)∥xn − x∗∥+ βnK2

≤ max
{
∥xn − x∗∥,K2

}
≤ . . . ≤ max

{
∥x0 − x∗∥,K2

}
.

This shows that sequence {xn} is bounded. Consequently, {wn} is also bounded. By the
definition of {wn} we have

∥wn − x∗∥2 = ∥(1− βn)[xn + θn(xn − xn−1)]− x∗∥2

≤ ∥(1− βn)(xn − x∗) + (1− βn)θn(xn − xn−1)∥2 + 2βn⟨−x∗, wn − x∗⟩
= (1− βn)

2∥xn − x∗∥2 + (1− βn)
2θ2n∥xn − xn−1∥2

+ 2θn(1− βn)⟨xn − x∗, xn − xn−1⟩+ 2βn⟨−x∗, wn − xn+1⟩
+ 2βn⟨−x∗, xn+1 − x∗⟩

≤ (1− βn)∥xn − x∗∥2 + 2βn⟨−x∗, xn+1 − x∗⟩

+ βn

[
(1− βn)

2 θ
2
n

βn
∥xn − xn−1∥2 + 2∥x∗∥∥wn − xn+1∥

+ 2(1− βn)
θn
βn

∥xn − xn−1∥∥xn − x∗∥
]

(3.9)

≤ (1− βn)∥xn − x∗∥2 + 2βn⟨−x∗, xn+1 − x∗⟩

+ βn

[
K3 + 2∥x∗∥∥wn − xn+1∥

]
(3.10)

for some K3 > 0. Combining (3.7) together with (3.10) we obtain

∥xn+1 − x∗∥2 ≤ (1− βn)∥xn − x∗∥2 + 2βn⟨−x∗, xn+1 − x∗⟩

+ βn

[
K3 + 2∥x∗∥∥wn − xn+1∥

]
. (3.11)

Next, we consider the following two cases.
Case 1. Assume that the sequence {∥xn − x∗∥} is a monotonically decreasing sequence,
that is, there exists a natural number N such that ∥xn+1−x∗∥ ≤ ∥xn−x∗∥ for all n ≥ N .
Then {∥xn − x∗∥} is convergent and ∥xn − x∗∥2 − ∥xn+1 − x∗∥2 → 0 as n → ∞. Let
σn := xn + θn(xn − xn−1). Then

∥σn − x∗∥2 = ∥xn + θn(xn − xn−1)− x∗∥2

≤ ∥xn − x∗∥2 + βn

[
θ2n
βn

∥xn − xn−1∥2 + 2
θn
βn

∥xn − xn−1∥∥xn − x∗∥
]
.

Since {xn} is bounded, we observe that {σn} is also bounded. Due to the condition (3.1),
and (3.3), there exists K4 > 0 such that ∥σn − x∗∥2 ≤ ∥xn − x∗∥2 + βnK4. This implies
that

∥wn − x∗∥2 = ∥σn − x∗ − βnσn∥2 = ∥σn − x∗∥2 + β2
n∥σn∥2 − 2βn⟨σn − x∗, σn⟩

≤ ∥xn − x∗∥2 + βnK4 + β2
n∥σn∥2 − 2βn⟨σn − x∗, σn⟩

≤ ∥xn − x∗∥2 + βnK5, (3.12)
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for some K5 > 0. Combining the expressions (3.6) and (3.12) we have

∥xn+1 − x∗∥2 ≤ ∥xn − x∗∥2 + βnK5 − γn(1− γnL)
∥∥∥(JB2

λ − I)Awn

∥∥∥2 .
This implies that

γn(1−γnL)
∥∥∥(JB2

λ − I)Awn

∥∥∥2 ≤ ∥xn − x∗∥2 − ∥xn+1 − x∗∥2 + βnK5. (3.13)

We obtain from inequality above together with {γn} ⊂ (0, 1
L ) and (3.1) that

lim
n→∞

∥∥∥(JB2

λ − I)Awn

∥∥∥ = 0. (3.14)

This implies that∥∥∥A∗(JB2

λ − I)Awn

∥∥∥ ≤ ∥A∗∥
∥∥∥(JB2

λ − I)Awn

∥∥∥ → 0 as n → ∞. (3.15)

Using Lemma 2.3 (1) we have

∥xn+1 − x∗∥2 =
∥∥∥JB1

λ

(
wn + γnA

∗(JB2

λ − I)Awn

)
− x∗

∥∥∥2
≤

⟨
xn+1 − x∗, wn + γnA

∗(JB2

λ − I)Awn − x∗
⟩

=
1

2
∥xn+1 − x∗∥2 + 1

2

∥∥∥wn − x∗ + γnA
∗(JB2

λ − I)Awn

∥∥∥2
− 1

2

∥∥∥xn+1 − wn − γnA
∗(JB2

λ − I)Awn

∥∥∥2
=

1

2
∥xn+1 − x∗∥2 + 1

2

[
∥wn − x∗∥2 + γ2

n

∥∥∥A∗(JB2

λ − I)Awn

∥∥∥2
+ 2

⟨
wn − x∗, γnA

∗(JB2

λ − I)Awn

⟩ ]
− 1

2

[
∥xn+1 − wn∥2 + γ2

n

∥∥∥A∗(JB2

λ − I)Awn

∥∥∥2
− 2γn

⟨
xn+1 − wn, A

∗(JB2

λ − I)Awn

⟩ ]
=

1

2
∥xn+1 − x∗∥2 + 1

2
∥wn − x∗∥2 − 1

2
∥xn+1 − wn∥2

+ 2γn

⟨
xn+1 − x∗, A∗(JB2

λ − I)Awn

⟩
which implies that

∥xn+1 − wn∥2 ≤ ∥wn − x∗∥2 − ∥xn+1 − x∗∥2

+ 2γn

⟨
xn+1 − x∗, A∗(JB2

λ − I)Awn

⟩
. (3.16)

From (3.1), (3.15), (3.12), and (3.16) we obtain

∥xn+1 − wn∥2 ≤ ∥xn − x∗∥2 − ∥xn+1 − x∗∥2 + βnK4

+ 2γn ∥xn+1 − x∗∥
∥∥∥A∗(JB2

λ − I)Awn

∥∥∥ → 0 as n → ∞. (3.17)
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Further, we also obtain∥∥∥xn+1 − JB1

λ wn

∥∥∥ =
∥∥∥JB1

λ

(
wn + γnA

∗
(
JB2

λ − I
)
Awn

)
− JB1

λ wn

∥∥∥
≤ γn

∥∥∥A∗
(
JB2

λ − I
)
Awn

∥∥∥ → 0 as n → ∞. (3.18)

and

∥wn − xn∥ = ∥(1− βn)[xn + θn(xn − xn−1)]− xn∥
≤ (1− βn)θn∥xn − xn−1∥+ βn∥xn∥

= βn

[
(1− βn)

θn
βn

∥xn − xn−1∥+ ∥xn∥
]
→ 0 as n → ∞. (3.19)

Therefore, by (3.17) and (3.18), we have

lim
n→∞

∥∥∥wn − JB1

λ wn

∥∥∥ = 0 (3.20)

and it follows from (3.17) and (3.19) that

∥xn+1 − xn∥ ≤ ∥xn+1 − wn∥+ ∥wn − xn∥ → 0 as n → ∞. (3.21)

Since sequence {xn} is bounded, there exists a subsequence {xni
} of {xn} such that

xni ⇀ z for some z ∈ H1 and

lim sup
n→∞

⟨−x∗, xn − x∗⟩ = lim
i→∞

⟨−x∗, xni
− x∗⟩.

By (3.19), we have uni ⇀ z. Therefore, from Lemma 2.2, Lemma 2.3, and (3.20) we have

z = JB1

λ z. Since A is a linear operator, it follows that Auni ⇀ Az. Similarly, by Lemma

2.2, Lemma 2.3, and (3.14) we have Az = JB2

λ Az. Therefore, z ∈ Ω.
Since x∗ = PΩ(0), thus

lim sup
n→∞

⟨−x∗, xn − x∗⟩ = lim
i→∞

⟨−x∗, xni
− x∗⟩ = ⟨−x∗, x∗ − z⟩ ≤ 0.

By using (3.1), (3.3), (3.11), (3.17), and Lemma 2.5, we have that limn→∞ ∥xn−x∗∥ = 0.

Case 2. Assume that there exists a subsequence {∥xnj
− x∗∥} of {∥xn − x∗∥} such

that ∥xnj
− x∗∥ < ∥xnj+1 − x∗∥ for all j ≥ 0. Applying Lemma 2.6, there exists a

nondecreasing sequence integers {τ(n)} such that limn→∞ τ(n) = ∞ and

∥xτ(n) − x∗∥ ≤ ∥xτ(n)+1 − x∗∥ and ∥xn − x∗∥ ≤ ∥xτ(n)+1 − x∗∥. (3.22)

It follows from (3.13) and (3.22) that

γτ(n)(1− γτ(n)L)
∥∥∥(JB2

λ − I)Auτ(n)

∥∥∥2
≤ ∥xτ(n) − x∗∥2 − ∥xτ(n)+1 − x∗∥2 + βτ(n)K4 ≤ βτ(n)K4 → 0 as n → ∞.

(3.23)

In a similar manner as in Case 1, we can show that

lim
n→∞

∥∥∥uτ(n) − JB1

λ uτ(n)

∥∥∥ = 0,

lim
n→∞

∥∥xτ(n)+1 − xτ(n)

∥∥ = 0, (3.24)

lim
n→∞

∥∥uτ(n) − xτ(n)

∥∥ = 0, (3.25)
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and the boundlessness of sequence {xτ(n)}, we also show that

lim sup
n→∞

⟨−x∗, xτ(n) − x∗⟩ = ⟨−x∗, z − x∗⟩ ≤ 0. (3.26)

Furthermore, it follows from (3.9) and (3.22) that

βτ(n)∥xτ(n) − x∗∥2 ≤ ∥xτ(n) − x∗∥2 − ∥xτ(n)+1 − x∗∥2

+ βτ(n)

[
(1− βτ(n))

2
α2
τ(n)

βτ(n)
∥xτ(n) − xτ(n)−1∥2

+ 2(1− βτ(n))
ατ(n)

βτ(n)
∥xτ(n) − xτ(n)−1∥∥xτ(n) − x∗∥

+ 2∥x∗∥∥uτ(n) − xτ(n)+1∥+ 2⟨−x∗, xτ(n)+1 − x∗⟩
]

≤ βτ(n)

[
(1− βτ(n))

2
α2
τ(n)

βτ(n)
∥xτ(n) − xτ(n)−1∥2

+ 2(1− βτ(n))
ατ(n)

βτ(n)
∥xτ(n) − xτ(n)−1∥∥xτ(n) − x∗∥

+ 2∥x∗∥∥uτ(n) − xτ(n)+1∥+ 2⟨−x∗, xτ(n)+1 − x∗⟩
]
.

Thus,

∥xτ(n) − x∗∥2 ≤ (1− βτ(n))
2
α2
τ(n)

βτ(n)
∥xτ(n) − xτ(n)−1∥2

+ 2(1− βτ(n))
ατ(n)

βτ(n)
∥xτ(n) − xτ(n)−1∥∥xτ(n) − x∗∥

+ 2∥x∗∥∥uτ(n) − xτ(n)+1∥+ 2⟨−x∗, xτ(n) − x∗⟩. (3.27)

By (3.3), (3.25), (3.26), and (3.27), we have lim supn→∞ ∥xτ(n) − x∗∥ = 0. This implies
that

lim
n→∞

∥xτ(n) − x∗∥ = 0. (3.28)

Hence, from (3.24) and (3.28) we obtain

∥xτ(n)+1 − x∗∥ ≤ ∥xτ(n)+1 − xτ(n)∥+ ∥xτ(n) − x∗∥ → 0 as n → ∞. (3.29)

It follows from (3.22) and (3.29) that limn→∞ ∥xn − x∗∥ = 0. Therefore, the proof is
completed.

4. Applications

In this section, we apply the proposed method to derive algorithms for solving two main
problems; split feasibility problem and split minimization problem.

4.1. Split Feasibility Problem

Let H1 and H2 be two real Hilbert spaces, C ⊂ H1 and Q ⊂ H2 be nonempty closed and
convex sets, and A : H1 → H2 be a bounded linear operator. The split feasibility problem
introduced by Censor and Elfving [6] deals with the following problem:

Find x∗ ∈ C such that Ax∗ ∈ Q. (4.1)
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The set Θ is used to denote the solution set of the problem (4.1). This problem has been
successfully applied to a variety of real-world problems, particularly in signal processing
and picture reconstruction, with significant progress made in intensity modulated treat-
ment. Many iterative algorithms have been established for the problem (4.1), one can
refer to, for example, [1, 3, 4, 10, 14, 29, 31] and references therein.

Applying the derivations (2.2) and Theorem 4.1 we obtain the following result for
solving the problem (4.1).

Algorithm 2 Modified inertial iterative algorithm for (4.1)

Initialization: Choose arbitrary starting points x0, x1 ∈ H1 and set α > 0, λ > 0 and
{γn} ⊂ [γ∗, γ

∗] ⊂ 1
L , where L = ∥A∥2. Moreover, choose {βn} ⊂ (0, 1) defined in (3.1).

Iterative Steps: Calculate {xn+1} as follows:{
wn = (1− βn)

[
xn + θn(xn − xn−1)

]
,

xn+1 = PC

(
wn − γnA

∗(I − PQ)Awn

)
,

where sequence {θn} is defined in (3.2).

Theorem 4.1. Let H1 and H2 be two real Hilbert spaces, C and Q be nonempty closed
convex subsets, and A : H1 → H2 be a bounded linear operator with its adjoint A∗. be
the adjoint of A. Let Θ be a solution set of the problem (4.1) and assume that Θ ̸= ∅.
Then sequence {xn} generated by Algorithm 2 converges strongly to a point x∗ ∈ Θ, where
x∗ = PΘ(0).

4.2. Split Minimization Problem

Let H1 and H2 be real Hilbert spaces, and f : H1 → R∪{+∞} and g : H2 → R∪{+∞}
be proper lower semi-continuous and convex functions. It follows from the face that the
subdifferential of f and g, ∂f and ∂g, respectively, are maximal monotone mappings. In
this section, we consider the following the split minimization problem:

x∗ ∈ argmin f and Ax∗ ∈ argmin g, (4.2)

where A is a bounded linear operator. The set Γ is used to denote the solution set of
the problem (4.2). In other words, this problem is finding a minimizer x∗ of f in Hilbert
space H1 such that its image under linear bounded operator Ax∗ minimizes g in Hilbert
space H2. Many iterative algorithms has been established for the problem (4.2), one can
refer to, for example, [10, 28] and references therein.

Letting B1 = ∂f and B2 = ∂g in the problem (1.1) - (1.2) and applying Theorem 4.1
we obtain the result for solving the problem (4.2).

Theorem 4.2. Let H1 and H2 be two real Hilbert spaces. Let ∂f : H1 → 2H1 and
∂g : H2 → 2H2 be two maximal monotone mappings. Let A : H1 → H2 be a bounded
linear operator with its adjoint A∗. Let Γ be a solution set of the problem (4.2) and
assume that Γ ̸= ∅. Then sequence {xn} generated by Algorithm 3 converges strongly to
a point x∗ ∈ Γ, where x∗ = PΓ(0).

5. Numerical Experiments

In this section, we present some numerical experiments to test the computational per-
formance and potential applicability of our proposed Algorithm 1 in comparison with
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Algorithm 3 Modified inertial iterative algorithm for (4.2)

Initialization: Choose arbitrary starting points x0, x1 ∈ H1 and set α > 0, λ > 0 and
{γn} ⊂ [γ∗γ

∗] ⊂ 1
L , where L = ∥A∥2. Moreover, choose {βn} ⊂ (0, 1) defined in (3.1).

Iterative Steps: Calculate {xn+1} as follows:{
wn = (1− βn)

[
xn + θn(xn − xn−1)

]
,

xn+1 = J∂f
λ

(
wn − γnA

∗
(
I − J∂g

λ

)
Awn

)
,

where sequence {θn} is defined in (3.2).

some existing algorithms for solving the considered split variational inequality problem.
We present two numerical examples and we apply the proposed algorithm in signal pro-
cessing, in particular we solve the problem of recovering a sparse and noisy signal from a
limited number. All algorithms were tested by the MATLAB program (version R2021a)
on a macOS (1.60 GHz Dual-Core, Intel Core i5, CPU @ 2133 MHz, Ram 8.00 GB).

For both examples, the number of iterations and CPU time in seconds are denoted by
Iter and CPU, respectively. We denote Byrne’s Alg. (1.5) by the compared algorithm
proposed in [5] and denote Chuang’s Alg. by the algorithm proposed in [10, Algorithm
3.1].

Example 5.1. [13] Let A,A1, A2 : Rm → Rm be matrices generated from a normal
distribution with mean zero and unit variance. Mappings B1, B2 : Rm → Rm are defined
by

B1(x) = A∗
1A1(x) and B2(y) = A∗

2A2(y).

Find a point x∗ = (x∗
1, . . . , x

∗
m)T ∈ Rm such that B1(x

∗) = (0, . . . , 0)T and B2(Ax∗) =
(0, ..., 0)T . Note that x∗ = (0, . . . , 0)T ∈ Rm is a the minimum norm solution.

In this example, we divide our comparison into three experiments, which are as follows.
Experiment 1. In order to determine the effectiveness of the inertial term (1− βn), we

analyze the proposed Algorithm 1 with and without the inertial term (1−βn). For this ex-
periment the initial points x0 and x1 are chosen randomly and x0 = x1 = [1, . . . , 1]T . We
set m = 1000, θ = 1

100 , λ = 1, γn = 0.9
L , βn = 1

n+2 , and ϵn = β3
n as the control parameters.

The procedure will terminate when ∥xn − x∗∥ ≤ TOL, where TOL is 10−2, 10−4, 10−6,
10−8, respectively.

It can be seen from Table 1 that Algorithm 1 with inertial term (1− βn), denoted by
Alg. 1 (W), have greatly improved more than algorithm without inertial term (1 − βn),
denoted by Alg. 1 (WO), in terms of number of iterations and CPU time.

Experiment 2. We illustrate the convergence behavior of the proposed algorithm 1
with respect to the inertial parameter θn and the parameter βn. We consider different
values of the parameters βn. For this experiment the initial points x0 and x1 are chosen
randomly and set m = 1000, θ = 1

100 , λ = 1, γn = 0.9
L , θn = n

2n+2 , and ϵn = β3
n as the

control parameters. We set ∥xn − x∗∥ ≤ 10−5 as the stopping criteria.
As shown in Table 2 and Figure 1, the performance of Algorithm 1 has greatly improved

performance with different values of βn.
Experiment 2. We compare our proposed Algorithm 1 with Byrne’s Alg. (1.5) and

Chuang’s Alg. For the comparison the initial points x0 and x1 are chosen randomly,
m = 1000, λn = λ = 1 and γn = 0.3

L for all algorithms. We choose α = 1
2 , βn = 1

n+2
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Table 1. The performance between the proposed Algorithm 1 with and
without (1− βn).

TOL x0 and x1 are chosen randomly x0 = x1 = [1, . . . , 1]T

Alg. 1 (W) Alg. 1 (WO) Alg. 1 (W) Alg. 1 (WO)

Iter CPU Iter CPU Iter CPU Iter CPU

10−2 9 1.2248 19 3.0434 10 1.3866 24 4.5949

10−4 17 2.8467 41 8.1389 19 3.0083 45 8.2932

10−6 23 4.2276 52 10.0477 27 4.5611 61 11.1340

10−8 36 6.9059 77 14.1564 39 7.4917 84 17.1669

Table 2. Performance of the proposed Algorithm 1 with different values
of parameter βn.

θn βn

1
5n+3

1
n+2

lnn
n

1√
n+2

Iter CPU Iter CPU Iter CPU Iter CPU

n
2n+2 43 8.6495 37 7.0866 24 5.7033 20 3.6564

and ϵn = β3
n for Algorithm 1, k = 5, δ = 0.3 and γn = δ

L for Chuang’s Alg. Finally,
we set ∥xn − x∗∥2 ≤ TOL as the stopping criteria for all the algorithms, where TOL is
10−2, 10−3, 10−4, 10−5, respectively.

Table 3 with Figure 2 illustrate that proposed Algorithm 1 is the best effective method
of convergence rate. Because the Chuang’s Alg. makes use of the linesearch process, it is
significantly faster than the Byrne’s Alg. (1.5) when it comes to stopping criteria 10−2

and 10−3. However, it performs more slowly than the Byrne Algorithm when it comes to
the stopping criteria 10−4 and 10−5.

Table 3. The performance of Algorithm 1, Byrne’s Alg. (1.5) , and
Chuang’s Alg. with different values of stopping criterion TOL.

TOL Algorithm 1 Byrne’s Alg. (1.5) Chuang’s Alg.
Iter CPU Iter CPU Iter CPU

10−2 28 7.0783 41 7.1841 46 27.5944
10−3 54 13.4705 84 17.9171 84 55.8905
10−4 77 21.3791 113 26.8859 116 86.7047
10−5 94 25.9012 136 34.2200 116 87.2640

Next example, we will look at the problem of recovering a sparse and noisy signal.

Bangmod Int. J. Math. & Comp. Sci., 2021



48 P. Phairatchatniyom, H. Rehman, J. Abubakar, P. Kumam, J. Mart́ınez-Moreno

10 15 20 25 30 35 40 45 50

Number of iterations

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Figure 1. Performance of the proposed Algorithm 1 with different val-
ues of parameter βn.

Example 5.2. [28, 29] Let A : Rn → Rm (m < n) be a bounded linear operator.
A compressed sensing problem can be written as the following underdetermined linear
equation system:

u = Av + τ, (5.1)

where v ∈ RN represents K-sparse signal to be recovered (i << n) and the vector
u ∈ Rm is the observed data with additive noisy τ . The problem (5.1) is equivalent to
the following minimization problem, or least absolute shrinkage and selection operator
problem (LASSO):

min
x∈Rn

1

2
∥Av − u∥22,

s.t. ∥v∥1 ≤ t,
(5.2)

where t is a positive constant.

To solve the problem (1.1) - (1.2), we now apply our Algorithm 1 to the problem
(5.2). Here, A ∈ Rm×n is generated from a normal distribution with mean zero and
unit variance, original signal v contained i randomly generated ±1 spikes with nonzero
elements, u is generated by Gaussian noise τ of variance 10−4, and the initial points x0

and x1 are chosen randomly. For simplicity we choose the following parameters: Iter =
100000, γn = 0.5

L and t = i − 0.0001 for all the algorithms, θ = 1
100 , βn = 1√

n+2
and

ϵn = β3
n for Algorithm 1, and δ = 0.5 and γn = δ

L for Chuang’s Alg. For all algorithms

are measured by mean squared error En := 1
N ∥x∗− v∥ and algorithms stop if En ≤ 10−4.

The numerical results of all algorithms are described in Table 4, Figure 3 and 4. Ob-
serving that our the performance of proposed Algorithm 1 is better than other algorithms.
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Figure 2. Performance of Algorithms 1, Byrne’s Alg. (1.5), and
Chuang’s Alg. with different values of the stopping criterion.

6. Conclusion

In this article, we proposed an inertial algorithm for solving split variational inequality
problem involving two maximally monotone mappings. We showed a strong convergence
of the proposed algorithm under some easy to verify and standard conditions. We pre-
sented numerical examples to illustrate and support the proposed theoretical convergence
results. Additionally, we showed the potential applicability of the proposed algorithm in
signal recovery. Numerical experiments presented suggested that the proposed algorithm
is fast, efficient and robust in comparison with some algorithms in the literature.
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Figure 3. The numerical performance of Byrne’s Alg. (1.5), and
Chuang’s Alg. and Algorithm 1 for the recovery of a sparse i = 30
signal, n = 512, and m = 256.

Original signal (n=1024, m=512, 40 spikes)
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Figure 4. The numerical performance of Byrne’s Alg. (1.5), and
Chuang’s Alg. abd Algorithm 1 for the recovery of a sparse i = 40
signal, n = 1024, and m = 512.
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Table 4. Recovered signal of all algorithms with the different values of
n, m, and i.

Algorithms n = 512, m = 256, 30 spikes n = 1024, m = 512, 40 spikes
MSE CPU MSE CPU

Algorithm 1 3.0698e-09 0.730200 1.9155e-09 3.864967
Byrne’s Alg. (1.5) 1.1740e-08 0.065005 2.6604e-09 0.163357
Chuang’s Alg. 9.8704e-09 0.183777 2.1565e-09 0.593420
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