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1. Introduction

In this article, we study the nonlocal initial-value problem for the first-order differential
system

x′(t) = f1(t, x(t), y(t), z(t))

y′(t) = f2(t, x(t), y(t), z(t))

z′(t) = f3(t, x(t), y(t), z(t)) a.e. on [0, 1]

x(0) = α[x], y(0) = β[y], z(0) = γ[z].

(1.1)

Here, f1, f2, f3 : [0, 1] × R3 → R are Carathéodory functions, α, β, γ : C[0, 1] → R are
linear and continuous functionals.

In this paper, problem (1.1) was studied using as main tools the fixed point principles
by Perov, Schauder and Leray-Schauder, together with the technique that uses convergent
to zero matrices and vector norms. Note that the m-point boundary condition x(0) +∑m

k=1 akx(tk) = 0 is a particular case of condition x(0) = α[x] when

α[x] = −
m∑

k=1

akx(tk). (1.2)

In [2], the authors studied the nonlocal initial-value problem for first-order differential
equations

x′(t) = f(t, x(t)) (a.e. on [0, 1])

x(0) +

m∑
k=1

akx(tk) = 0,

assuming that f : [0, 1] × R2 → R is a Carathéodory function, tk are given points with
0 ≤ t1 ≤ t2 ≤ · · · ≤ tm < 1 and ak, ãk are real numbers with 1 +

∑m
k=1 ak ̸= 0 and

1 +
∑m

k=1 ãk ̸= 0. The main idea there was to rewrite the problem as a fixed point
problem, involving a sum of two operators, one of Fredholm type whose values depend
only on the restrictions of functions to [0, tm], and the other one, a Volterra type operator
depending on the restrictions to [tm, 1]. The same strategy was adapted in [4] for the
first-order differential system

x′(t) = f(t, x(t), y(t), z(t))

y′(t) = g(t, x(t), y(t), z(t))

z′(t) = h(t, x(t), y(t), z(t)) a.e. on [0, 1]

x(0) +

m∑
k=1

akx(tk) = 0, y(0) +

m∑
k=1

ãky(tk) = 0, z(0) +

m∑
k=1

˜̃akz(tk) = 0.

In this article, the nonlocal conditions are expressed by means of linear continuous
functionals on C[0, 1], as in the works by Webb-Lan [9]. Our main assumption on func-
tionals α, β, γ extends to the general case the specific property of the particular functional
(1.2) of depending only on the points from a proper subinterval [0, t0] of [0, 1], namely
[0, tm] (taking t0 := tm). More exactly, we require the following property:

x|[0,t0] = y|[0,t0] implies α[x− y] = 0, whenever x, y ∈ C[0, 1]. (1.3)
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Therefore, (1.3) reads that the value of functional α on any function x only depends
on the restriction of x to the fixed subinterval [0, t0]. The key property of functional α
satisfying (1.3) is that

α[u] ≤ ∥α∥ · |u|C[0,t0] , (1.4)

for every u ∈ C[0, 1]. Normally, for a given functional

α : C[0, 1] → R,

we have

|α[g]| ≤ ∥α∥ · |g|C[0,1].

However, if α satisfies condition (1.3), then

|α[g]| ≤ ∥α∥ · |g|C[0,t0].

Indeed, for each g ∈ C[0, 1], if we let g̃ ∈ C[0, 1] be defined by

g̃(t) =

{
g(t), if t ∈ [0, t0]

g(t0), if t ∈ [t0, 1],

then

|α[g]| = |α[g̃]| ≤ ∥α∥ · |g̃|C[0,1] = ∥α∥ · |g|C[0,t0].

The goal of this work is to revisite system (1.1) under the assumption that both functionals
α and β satisfy (1.3), using the strategy from [4].

Problem (1.1) is equivalent to the following integral system in C[0, 1]3:

x(t) =
1

1− α[1]
α[g1] +

∫ t

0

f1(s, x(s), y(s), z(s))ds

y(t) =
1

1− β[1]
β[g2] +

∫ t

0

f2(s, x(s), y(s), z(s))ds,

z(t) =
1

1− γ[1]
γ[g3] +

∫ t

0

f3(s, x(s), y(s), z(s))ds,

where

g1(t) :=

∫ t

0

f1(s, x(s), y(s), z(s))ds,

g2(t) :=

∫ t

0

f2(s, x(s), y(s), z(s))ds,

g3(t) :=

∫ t

0

f3(s, x(s), y(s), z(s))ds.
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This can be viewed as a fixed point problem in C[0, 1]3 for the completely continuous
operator T : C[0, 1]3 → C[0, 1]3, T = (T1, T2, T3), where T1, T2 and T3 are given by

T1(x, y, z)(t) =
1

1− α[1]
α[g1] +

∫ t

0

f1(s, x(s), y(s), z(s))ds,

T2(x, y, z)(t) =
1

1− β[1]
β[g2] +

∫ t

0

f2(s, x(s), y(s), z(s))ds,

T3(x, y, z)(t) =
1

1− γ[1]
γ[g3] +

∫ t

0

f3(s, x(s), y(s), z(s))ds.

In fact, under assumption (1.3) on α, β and γ operators T1, T2 and T3 appear as sums
of three integral operators, one of Fredholm type, whose values depend only on the re-
strictions of functions to [0, t0], and the other one, a Volterra type operator depending
on the restrictions to [t0, 1], as this was pointed out in [2]. Thus, T1 can be rewritten as
T1 = TF1 + TV1 , where

TF1
(x, y, z)(t) =

{
1

1−α[1]α[g1] +
∫ t

0
f1(s, x(s), y(s), z(s))ds, if t < t0

1
1−α[1]α[g1] +

∫ t0
0

f1(s, x(s), y(s), z(s))ds, if t ≥ t0;

TV1
(x, y, z)(t) =

{
0, if t < t0∫ t

t0
f1(s, x(s), y(s), z(s))ds, if t ≥ t0.

Similarly, T2 = TF2
+ TV2

, where

TF2
(x, y, z)(t) =

{
1

1−β[1]β[g2] +
∫ t

0
f2(s, x(s), y(s), z(s))ds, if t < t0

1
1−β[1]β[g2] +

∫ t0
0

f2(s, x(s), y(s), z(s))ds, if t ≥ t0;

TV2
(x, y, z)(t) =

{
0, if t < t0∫ t

t0
f2(s, x(s), y(s), z(s))ds, if t ≥ t0.

and T3 = TF3 + TV3 , where

TF3
(x, y, z)(t) =

{
1

1−γ[1]γ[g3] +
∫ t

0
f3(s, x(s), y(s), z(s))ds, if t < t0

1
1−γ[1]γ[g3] +

∫ t0
0

f3(s, x(s), y(s), z(s))ds, if t ≥ t0;

TV2(x, y, z)(t) =

{
0, if t < t0∫ t

t0
f3(s, x(s), y(s), z(s))ds, if t ≥ t0.

This allows us to split the growth condition on the nonlinear terms f1(t, x, y, z),
f2(t, x, y, z) and f3(t, x, y, z) into two parts, one for t ∈ [0, t0] and another one for
t ∈ [t0, 1], in such way that one re-obtains the classical growth when t0 = 0, that is
for the local initial condition x(0) = 0.

We conclude this introductory part by some notation, notions and basic results that
are used in the next sections. The symbol |x|C[a,b] stands for the max-norm on C[a, b],

|x|C[a,b] = maxt∈[a,b] |x(t)|,

while ∥x∥C[a,b] denotes the Bielecki norm

∥x∥C[a,b] = |x(t)e−θ(t−a)|C[a,b]

for some suitable θ > 0.
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In the next sections, three fixed point principles will be used to prove the existence of
solutions for the semilinear problem, namely the fixed point theorems by Perov, Schauder
and Leray-Schauder (see [7]). In all three cases a key role will be played by the so called
convergent to zero matrices. A square matrix M with nonnegative elements is said to be
convergent to zero if

Mk → 0 as k → ∞.

It is known that the property of being convergent to zero is equivalent to each of the
following three conditions (for details see [7, 8]):

(a) I −M is nonsingular and (I −M)−1 = I +M +M2 + . . . , where I stands for the
unit matrix of the same order as M ;

(b) the eigenvalues of M are located in the interior of e the unit disc of the complex
plane;

(c) I −M is nonsingular and (I −M)−1 has nonnegative elements.

The following lemma whose proof is immediate from characterization (b) of convergent
to zero matrices will be used in the sequel:

Lemma 1.1. If A is a square matrix that converges to zero and the elements of an other
square matrix B are small enough, then A+B also converges to zero.

We finish this introductory section by recalling (see [1, 7]) three fundamental results
which will be used in the next sections. Let X be a nonempty set. By a vector-valued
metric on X we mean a mapping d : X ×X → Rn

+ such that

(i) d(u, v) ≥ 0 for all u, v ∈ X and if d(u, v) = 0 then u = v;
(ii) d(u, v) = d(v, u) for all u, v ∈ X;
(iii) d(u, v) ≤ d(u,w) + d(w, v) for all u, v, w ∈ X.

Here, for x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), by x ≤ y we mean xi ≤ yi for
i = 1, 2, . . . , n. We call the pair (X, d) a generalized metric space. For such a space
convergence and completeness are similar to those in usual metric spaces.

An operator T : X → X is said to be contractive (with respect to the vector-valued
metric d on X) if there exists a convergent to zero matrix M such that

d(T (u), T (v)) ≤ Md(u, v) for all u, v ∈ X.

Theorem 1.2 (Perov). Let (X, d) be a complete generalized metric space and T : X → X
a contractive operator with Lipschitz matrix M . Then T has a unique fixed point u∗ and
for each u0 ∈ X we have

d(T k(u0), u
∗) ≤ Mk(I −M)−1d(u0, T (u0)) for all k ∈ N.

Theorem 1.3 (Schauder). Let X be a Banach space, D ⊂ X a nonempty closed bounded
convex set and T : D → D a completely continuous operator (i.e., T is continuous and
T (D) is relatively compact). Then T has at least one fixed point.

Theorem 1.4 (Leray-Schauder). Let (X, ∥ · ∥X) be a Banach space, R > 0 and T :
BR(0;X) → X a completely continuous operator. If ∥u∥X < R for every solution u of
the equation u = λT (u) and any λ ∈ (0, 1), then T has at least one fixed point.

Throughout the paper we shall assume that the following conditions are satisfied:

(H1) 1− α[1] ̸= 0, 1− β[1] ̸= 0 and 1− γ[1] ̸= 0.
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(H2) f1, f2, f3 : [0, 1] × R3 → R are such that f1(., x, y, z), f2(., x, y, z), f3(., x, y, z)
are measurable for each (x, y, z) ∈ R2 and f1(t, ., ., .), f2(t, ., ., .), f3(t, ., ., .) are
continuous for almost all t ∈ [0, 1].

2. Nonlinearities with the Lipschitz property. Application of

Perov’s fixed point theorem

Here we show that the existence of solutions to problem (1.1) follows from Perov’s fixed
point theorem when f1, f2, f3 satisfy Lipschitz conditions in x and y:

|f1(t, x, y, z)− f1(t, x, y, z)| ≤

{
a11|x− x|+ b11|y − y|+ c11|z − z|, if t ∈ [0, t0]

a12|x− x|+ b12|y − y|+ c12|z − z|, if t ∈ [t0, 1],

(2.1)

|f2(t, x, y, z)− f2(t, x, y, z)| ≤

{
a21|x− x|+ b21|y − y|+ c21|z − z|, if t ∈ [0, t0]

a22|x− x|+ b22|y − y|+ c22|z − z|, if t ∈ [t0, 1],

(2.2)

|f3(t, x, y, z)− f3(t, x, y, z)| ≤

{
a31|x− x|+ b31|y − y|+ c31|z − z|, if t ∈ [0, t0]

a32|x− x|+ b32|y − y|+ c32|z − z|, if t ∈ [t0, 1],

(2.3)

for all x, y, z, x, y, z ∈ R.
In what follows we denote by

Aα :=
∥α∥

|1− α[1]|
+ 1, Bβ :=

∥β∥
|1− β[1]|

+ 1, and Cγ :=
∥γ∥

|1− γ[1]|
+ 1.

Theorem 2.1. If f1, f2, f3 satisfy the Lipschitz conditions (2.1), (2.2),(2.3) and the ma-
trix

M0 :=

a11t0Aα b11t0Aα c11t0Aα

a21t0Bβ b21t0Bβ c21t0Bβ

a31t0Cγ b31t0Cγ c31t0Cγ

 (2.4)

converges to zero, then problem (1.1) has a unique solution.

Proof. We shall apply Perov’s fixed point theorem in C[0, 1]3 endowed with the vector
norm ∥ · ∥ defined by

∥u∥ = (∥x∥, ∥y∥, ∥z∥)

for u = (x, y, z), where for w ∈ C[0, 1], we let

∥w∥ = max{|w|C[0,t0], ∥w∥C[t0,1]}.

We have to prove that T is contractive, more exactly that

∥T (u)− T (u)∥ ≤ Mθ∥u− u∥
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for all u = (x, y, z), u = (x, y, z) ∈ C[0, 1]3 and some matrix Mθ converging to zero. To
this end, let u = (x, y, z), u = (x, y, z) be any elements of C[0, 1]3. For t ∈ [0, t0], we have

|T1(x, y, z)(t)− T1(x, y, z)(t)|

=
∣∣∣ 1

1− α[1]
α[g1] +

∫ t

0

f1(s, x(s), y(s), z(s))ds

− 1

1− α[1]
α[g1]−

∫ t

0

f1(s, x(s), y(s), z(s))ds
∣∣∣

≤ | 1

1− α[1]
||α[g1 − g1]|+

∫ t

0

|f1(s, x(s), y(s), z(s))− f1(s, x(s), y(s), z(s))|ds.

Thus, using (1.3),

α[g1 − g1] ≤ ∥α∥ · |g1 − g1|C[0,t0]

and therefore by (1.4), we obtain the following evaluation:

|T1(x, y, z)(t)− T1(x, y, z)(t)|

≤ ∥α∥
|1− α[1]|

|g1 − g1|C[0,t0] +

∫ t

0

(a11|x(s)− x(s)|+ b11|y(s)− y(s)|+ c11|z(s)− z(s)|)ds.

(2.5)

Now, taking the supremum, we have

|T1(x, y, z)− T1(x, y, z)|C[0,t0]

≤ ∥α∥
|1− α[1]|

|g1 − g1|C[0,t0] + a11t0|x− x|C[0,t0] + b11t0|y − y|C[0,t0] + c11t0|z − z|C[0,t0].

Also

|g1(t)− g1(t)| ≤
∫ t

0

|f1(s, x(s), y(s), z(s))− f1(s, x(s), y(s), z(s))|ds

≤
∫ t

0

(a11|x(s)− x(s)|+ b11|y(s)− y(s)|+ c11|z(s)− z(s)|)ds

≤ a11t0|x− x|C[0,t0] + b11t0|y − y|C[0,t0] + c11t0|z − z|C[0,t0],

which gives

|g1 − g1|C[0,t0] ≤ a11t0|x− x|C[0,t0] + b11t0|y − y|C[0,t0] + c11t0|z − z|C[0,t0]. (2.6)

From (2.5) and (2.6), we obtain

|T1(x, y, z)− T1(x, y, z)|C[0,t0]

≤
( ∥α∥
|1− α[1]|

+ 1
)
(a11t0|x− x|C[0,t0] + b11t0|y − y|C[0,t0] + c11t0|z − z|C[0,t0])

= Aαa
1
1t0|x− x|C[0,t0] +Aαb

1
1t0|y − y|C[0,t0] +Aαc

1
1t0|z − z|C[0,t0].

(2.7)

Bangmod Int. J. Math. & Comp. Sci., 2021



8 A. Gupta, G. K. Sahu, S. Mishra

For t ∈ [t0, 1] and any θ > 0, we have

|T1(x, y, z)(t)− T1(x, y, z)(t)|

≤ | 1

1− α[1]
||α[g1 − g1]|+

∫ t

0

|f1(s, x(s), y(s), z(s))− f1(s, x(s), y(s), z(s))|ds

+

∫ t

t0

|f1(s, x(s), y(s), z(s))− f1(s, x(s), y(s), z(s))|ds.

Hence, (1.4) gives

|T1(x, y, z)(t)− T1(x, y, z)(t)|

≤
( ∥α∥
|1− α[1]|

+ 1
)(
a11t0|x− x|C[0,t0] + b11t0|y − y|C[0,t0] + c11t0|z − z|C[0,t0]

)
+

∫ t

t0

|f1(s, x(s), y(s), z(s))− f1(s, x(s), y(s), z(s))|ds.

The last integral can be further estimated as follows:

∫ t

t0

|f1(s, x(s), y(s), z(s))− f1(s, x(s), y(s), z(s))|ds

≤
∫ t

t0

(a12|x(s)− x(s)|+ b12|y(s)− y(s)|+ c12|z(s)− z(s)|)ds

= a12

∫ t

t0

|x(s)− x(s)| · e−θ(s−t0) · eθ(s−t0)ds

+ b12

∫ t

t0

|y(s)− y(s)| · e−θ(s−t0) · eθ(s−t0)ds

+ c12

∫ t

t0

|z(s)− z(s)| · e−θ(s−t0) · eθ(s−t0)ds

≤ a12
θ
eθ(t−t0)∥x− x∥C[t0,1] +

b12
θ
eθ(t−t0)∥y − y∥C[t0,1] +

c12
θ
eθ(t−t0)∥z − z∥C[t0,1].

Thus

|T1(x, y, z)(t)− T1(x, y, z)(t)| ≤ Aαa
1
1t0|x− x|C[0,t0] +Aαb

1
1t0|y − y|C[0,t0]

+Aαc
1
1t0|z − z|C[0,t0]

+
a12
θ
eθ(t−t0)∥x− x∥C[t0,1] +

b12
θ
eθ(t−t0)∥y − y∥C[t0,1]

+
c12
θ
eθ(t−t0)∥z − z∥C[t0,1].
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Dividing by eθ(t−t0) and taking the supremum when t ∈ [t0, 1], we obtain

∥T1(x, y, z)− T1(x, y, z)∥C[t0,1] ≤ Aαa
1
1t0|x− x|C[0,t0]

+Aαb
1
1t0|y − y|C[0,t0] +Aαc

1
1t0|z − z|C[0,t0]

+
a12
θ
∥x− x∥C[t0,1] +

b12
θ
∥y − y∥C[t0,1]

+
c12
θ
∥z − z∥C[t0,1].

(2.8)

Now (2.7) and (2.8) imply

∥T1(x, y, z)− T1(x, y, z)∥ ≤ (Aαa
1
1t0 +

a12
θ
)∥x− x∥+ (Aαb

1
1t0 +

b12
θ
)∥y − y∥

+ (Aαc
1
1t0 +

c12
θ
)∥z − z∥.

(2.9)

Similarly,

∥T2(x, y, z)− T2(x, y, z)∥ ≤ (Aαa
2
1t0 +

a22
θ
)∥x− x∥+ (Aαb

2
1t0 +

b22
θ
)∥y − y∥

+ (Aαc
2
1t0 +

c22
θ
)∥z − z∥.

(2.10)

∥T3(x, y, z)− T3(x, y, z)∥ ≤ (Aαa
3
1t0 +

a32
θ
)∥x− x∥+ (Aαb

3
1t0 +

b32
θ
)∥y − y∥

+ (Aαc
3
1t0 +

c32
θ
)∥z − z∥.

(2.11)

Using the vector norm we can put both inequalities (2.9), (2.10), (2.11) under the
vector inequality

∥T (u)− T (u)∥ ≤ Mθ∥u− u∥,

where

Mθ =

Aαa
1
1t0 +

a1
2

θ Aαb
1
1t0 +

b12
θ Aαc

1
1t0 +

c12
θ

Aαa
2
1t0 +

a2
2

θ Aαb
2
1t0 +

b22
θ Aαc

2
2t0 +

c22
θ

Aαa
3
1t0 +

a3
2

θ Aαb
3
1t0 +

b32
θ Aαc

3
2t0 +

c32
θ

 . (2.12)

Clearly the matrix Mθ can be represented as Mθ = M0 +M1, where

M1 =


a1
2

θ
b12
θ

c12
θ

a2
2

θ
b22
θ

c22
θ

a3
2

θ
b32
θ

c32
θ

 .

Bangmod Int. J. Math. & Comp. Sci., 2021



10 A. Gupta, G. K. Sahu, S. Mishra

Since M0 is assumed to be convergent to zero, from Lemma 1.1 we have that Mθ also
converges to zero for large enough θ > 0. The result follows now from Perov’s fixed point
theorem.

3. Nonlinearities with growth at most linear. Application of
Schauder’s fixed point theorem

Here we show that the existence of solutions to problem (1.1) follows from Schauder’s
fixed point theorem when f1, f2, f3, instead of the Lipschitz condition, satisfy the more
relaxed condition of growth at most linear:

|f1(t, x, y, z)| ≤

{
a11|x|+ b11|y|+ c11|z|+ d11, if t ∈ [0, t0]

a12|x|+ b12|y|+ c12|z|+ d12, if t ∈ [t0, 1],
(3.1)

|f2(t, x, y, z)| ≤

{
a21|x|+ b21|y|+ c21|z|+ d21, if t ∈ [0, t0]

a22|x|+ b22|y|+ c22|z|+ d22, if t ∈ [t0, 1],
(3.2)

|f3(t, x, y, z)| ≤

{
a31|x|+ b31|y|+ c31|z|+ d31, if t ∈ [0, t0]

a32|x|+ b32|y|+ c32|z|+ d32, if t ∈ [t0, 1],
(3.3)

Theorem 3.1. If f1, f2, f3 satisfy (3.1), (3.2), (3.3) and matrix (2.4) converges to zero,
then (1.1) has at least one solution.

Proof. To apply Schauder’s fixed point theorem, we look for a nonempty, bounded, closed
and convex subset B of C[0, 1]3 so that T (B) ⊂ B. Let x, y, z be any elements of C[0, 1].
For t ∈ [0, t0], using (1.3) and (1.4), we have

|T1(x, y, z)(t)| = | 1

1− α[1]
α[g1] +

∫ t

0

f1(s, x(s), y(s), z(s))ds|

≤ | 1

1− α[1]
||α[g1]|+

∫ t

0

(a11|x(s)|+ b11|y(s)|+ c11|z(s)|+ d1)ds

≤ ∥α∥
|1− α[1]|

|g1|C[0,t0] + a11t0|x|C[0,t0] + b11t0|y|C[0,t0]

+ c11t0|z|C[0,t0] + d11t0.

(3.4)

Also

|g1(t)| ≤
∫ t

0

|f1(s, x(s), y(s), z(s))|ds

≤
∫ t

0

(a11|x(s)|+ b11|y(s)|+ c11|z(s)|+ d1)ds

≤ a11t0|x|C[0,t0] + b11t0|y|C[0,t0]

+ c11t0|z|C[0,t0] + d11t0,

which gives

|g1|C[0,t0] ≤ a11t0|x|C[0,t0] + b11t0|y|C[0,t0] + c11t0|z|C[0,t0] + d1t0. (3.5)

Bangmod Int. J. Math. & Comp. Sci., 2021



APPLICATION OF NONLINEAR CONTRACTION CONDITION FOR SOLUTION 11

From (3.4) and (3.5), we obtain

|T1(x, y, z)|C[0,t0] ≤ (
∥α∥

|1− α[1]|
+ 1)(a11t0|x|C[0,t0] + b11t0|y|C[0,t0] + c11t0|z|C[0,t0]) + d̃11

= a11t0Aα|x|C[0,t0] + b11t0Aα|y|C[0,t0] + c11t0Aα|z|C[0,t0] + d̃11,

(3.6)

where d̃11 := d11t0Aα. For t ∈ [t0, 1] and any θ > 0, we have

|T1(x, y, z)(t)| = a11t0Aα|x|C[0,t0] + b11t0Aα|y|C[0,t0] + c11t0Aα|z|C[0,t0] + d̃11

+

∫ t

t0

(a12|x(s)|+ b12|y(s)|+ c12|z(s)|+ d12 )ds

≤ a11t0Aα|x|C[0,t0] + b11t0Aα|y|C[0,t0] + c11t0Aα|z|C[0,t0] + d̃11 + (1− t0)d
1
2

+ a12

∫ t

t0

|x(s)| · e−θ(s−t0) · eθ(s−t0)ds

+ b12

∫ t

t0

|y(s)| · e−θ(s−t0) · eθ(s−t0)ds

+ c12

∫ t

t0

|z(s)| · e−θ(s−t0) · eθ(s−t0)ds

≤ a11t0Aα|x|C[0,t0] + b11t0Aα|y|C[0,t0] + c11t0Aα|z|C[0,t0] + d10

+
a12
θ
eθ(t−t0)∥x∥C[t0,1] +

b12
θ
eθ(t−t0)∥y∥C[t0,1] +

c12
θ
eθ(t−t0)∥z∥C[t0,1],

where d10 := d̃11 + (1 − t0)d
1
2. Dividing by eθ(t−t0) and taking the supremum, it follows

that

∥T1(x, y, z)∥C[t0,1] ≤ a11t0Aα|x|C[0,t0] + b11t0Aα|y|C[0,t0] + c11t0Aα|z|C[0,t0]

+
a12
θ
eθ(t−t0)∥x∥C[t0,1] +

b12
θ
eθ(t−t0)∥y∥C[t0,1]

+
c12
θ
eθ(t−t0)∥z∥C[t0,1] + d10.

(3.7)

Clearly, (3.6) and (3.7) give

∥T1(x, y, z)∥ ≤ (a11t0Aα+
a12
θ
)∥x∥+(b11t0Aα+

b12
θ
)∥y∥+(c11t0Aα+

c12
θ
)∥z∥+d̃10, (3.8)

where d̃10 = max
{
d̃11, d

1
0

}
. Similarly,

∥T2(x, y, z)∥ ≤ (a21t0Bβ+
a22
θ
)∥x∥+(b21t0Bβ+

b22
θ
)∥y∥+(c21t0Bβ+

c22
θ
)∥z∥+d̃20, (3.9)

with d̃20 = max{d̃21, d20}, where d̃21 := d21t0Bβ and d20 := d̃21 + (1− t0)d
2
2.

∥T3(x, y, z)∥ ≤ (a31t0Cγ+
a32
θ
)∥x∥+(b31t0Cγ+

b32
θ
)∥y∥+(c31t0Cγ+

c32
θ
)∥z∥+d̃30, (3.10)

with d̃30 = max{d̃31, d30}, where d̃31 := d31t0Cγ and d30 := d̃31 + (1− t0)d
3
2.
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Now (3.8), (3.9) and (3.10) can be put together as∥T1(x, y, z)∥
∥T2(x, y, z)∥
∥T3(x, y, z)∥

 ≤ Mθ

∥x∥∥y∥
∥z∥

+

d̃10d̃20
d̃30

 ,

where the matrix Mθ is given by (2.12) and converges to zero for a large enough θ > 0.
Next we look for two positive numbers R1, R2 such that if ∥x∥ ≤ R1, ∥y∥ ≤ R2, ∥z∥ ≤ R3,
then ∥T1(x, y, z)∥ ≤ R1, ∥T2(x, y, z)∥ ≤ R2, ∥T3(x, y, z)∥ ≤ R3. To this end it is sufficient
that

(a11t0Aα +
a12
θ
)R1 + (b11t0Aα +

b12
θ
)R2 + (c11t0Aα +

c12
θ
)R3 + d̃10 ≤ R1

(a21t0Bβ +
a22
θ
)R1 + (b21t0Bβ +

b22
θ
)R2 + (c21t0Bβ +

c22
θ
)R3 + d̃20 ≤ R2,

(a31t0Cγ +
a32
θ
)R1 + (b31t0Cγ +

b32
θ
)R2 + (c31t0Cγ +

c32
θ
)R3 + d̃30 ≤ R2,

(3.11)

or equivalently

Mθ

R1

R2

R3

+

d̃10d̃20
d̃30

 ≤

R1

R2

R3

 ,

whence R1

R2

R3

 ≥ (I −Mθ)
−1

d̃10d̃20
d̃30

 .

Note that I −Mθ is invertible and its inverse (I −Mθ)
−1 has nonnegative elements since

Mθ converges to zero. Thus, if

B = {(x, y, z) ∈ C[0, 1]3 : ∥x∥ ≤ R1, ∥y∥ ≤ R2, ∥z∥ ≤ R3},
then T (B) ⊂ B and Schauder’s fixed point theorem can be applied.

4. More general nonlinearities. Application of the Leray-Schauder
principle

We now consider that nonlinearlities f1, f2, f3 satisfy more general growth conditions,
namely:

|f1(t, u)| ≤

{
ω1(t, |u|e), if t ∈ [0, t0]

γ(t)β1(|u|e), if t ∈ [t0, 1],
(4.1)

|f2(t, u)| ≤

{
ω2(t, |u|e), if t ∈ [0, t0]

γ(t)β2(|u|e), if t ∈ [t0, 1],
(4.2)

|f3(t, u)| ≤

{
ω3(t, |u|e), if t ∈ [0, t0]

γ(t)β3(|u|e), if t ∈ [t0, 1],
(4.3)
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