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Abstract This work presents a novel self-adaptive steepest-descent type algorithm for solving the split

system of minimization problem (SSMP) related to convex nonsmooth functions. The algorithm includes

a self-adaptive step size mechanism, which uses a step size that does not need prior information about

the operator norm. Under certain weakened assumptions of parameters, a strong convergence theorem

is established and proved for the algorithm. Specifically, the sequence generated by this new algorithm

strongly converges towards the minimum norm element of the SSPM. To assess the implementation of our

algorithm, a numerical example is provided. According to the numerical results, our algorithm showcases

effectiveness and simplicity in its implementation. Furthermore, the primary numerical experiment results

indicate that our proposed algorithm surpasses some existing results in the literature in terms of CPU

time and iteration count. Our result represents an extension and enhancement of recent findings in this

area.
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1. Introduction

One of the major problems in optimization is to find x̄ ∈ H such that

f(x̄) = min
x∈H

f(x), (1.1)

where H is a real Hilbert space and f : H → R∪ {+∞} is a proper and convex function.
Many authors have proposed some efficient and implementable algorithms and obtained
some convergence theorems for solving (1.1) and its generalizations, see for example,
[9, 26] and the reference therein.

Definition 1.1. [3, 14, 19] Let H be a real Hilbert space and f : H → R ∪ {+∞} be a
proper, convex, and lower semi-continuous function. Then,

(i) arg min
x∈H

f = {x̄ ∈ H : f(x̄) ≤ f(x),∀x ∈ H},
(ii) Moreau-Yosida approximate of the function f of parameter λ is given by

fλ(y) = min
u∈H

{f(u) + 1

2λ
∥y − u∥2},

(iii) the proximal operator of the function f with scaling parameter λ is a mapping
proxλf : H → H given by

proxλf (x) = argmin
y∈H

{f(y) + 1

2λ
∥x− y∥2}.

For a proper, convex, and lower semicontinuous function f , an effective approach to
solve (1.1) involves utilizing the proximal operator method, commonly referred to as the
proximal point algorithm (PPA), which was introduced by Martinet [15] in 1970. In 1976,
Rockafellar [18, 19] examined the PPA and its convergence to a solution of the convex
minimization problem within the context of Hilbert spaces, also see in [17]. The PPA is
defined by: x1 ∈ H and xn+1 = proxλnf (xn) where λn > 0, n ∈ N.

In this paper, we study the split system of minimization problem (SSMP), see Gebrie
and Wangkeeree in [6, 8]. To be precise, the SSMP is finding a point x̄ ∈ H1 with the
property

x̄ ∈
N∩
i=1

(argmin fi) such that Ax̄ ∈
M∩
j=1

(argmin gj), (1.2)

where H1 and H2 are real Hilbert spaces, A : H1 → H2 is a bounded linear operator,
fi : H1 → R ∪ {+∞} and gj : H2 → R ∪ {+∞} are proper, lower semicontinuous convex
functions for all i ∈ {1, . . . , N}, j ∈ {1, . . . ,M}.

Let Ω be the solution set of SSMP (1.2). Note that if fi = f for all i ∈ {1, . . . , N}
and gj = g for all j ∈ {1, . . . ,M}, then the SSMP (1.2) reduces to the split minimization
problem, which is to find a point x̄ ∈ H1 with the property

x̄ ∈ argmin f such that Ax̄ ∈ argmin g. (1.3)

Based on the concept of the step size selection method in the work of López et al. [12],
Moudafi and Thakur [16] presented a novel approach to selecting step sizes and put
forward weak convergence outcomes for solving the optimization problem given by

min
x∈H1

{f(x) + gλ(Ax)}, (1.4)
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where, f : H1 → R ∪ {+∞}, g : H2 → R ∪ {+∞} are two proper, convex, and lower-
semicontinuous functions, and gλ is the Moreau-Yosida approximation [19] of the function
g with parameter λ, defined as gλ(y) = minu∈H2

{g(u) + 1
2λ∥y − u∥2}.

It should be noticed that (1.4) is equivalent to the problem (1.3). Later, after Moudafi
and Thakur [16], several iterative methods have been proposed for solving the split mini-
mization problem (1.3), see for example [1, 16, 20–25] and the references therein. Inspired
by the results in [1, 16, 20–25], Gebrie and Wangkeeree in [6–8], considered a SSPM and
its general case, and they extended the way of selecting step sizes used by Moudafi and
Thakur [16] for solving split minimization problem to the framework of SSMP and its
generalization problem, so that the implementation of the proposed algorithm does not
need any prior information about the operator norm.

In this paper, we use the following settings. For λ>0 and x ∈ H1:

(A1) For each i ∈ {1, . . . , N}, define

li(x) =
1

2
∥(I − proxλfi)x∥

2 and ∇li(x) = (I − proxλfi)x.

(A2) l(x) and ∇l(x) are defined as l(x) = lix(x) and so ∇l(x) = ∇lix(x) where ix ∈
argmax{∥(I − proxλfi)x∥ : i ∈ {1, . . . , N}}.

(A3) For each j ∈ {1, . . . ,M}, define

hj(x) =
1

2
∥(I − proxλgj )Ax∥2 and ∇hj(x) = A∗(I − proxλgj )Ax.

(A4) For each j ∈ {1, . . . ,M}, define θj(x) = ∥∇hj(x) +∇l(x)∥.
Note that in [6] and [8], the definition of θj is given by θj(x) = max{∥∇hj(x)∥, ∥∇l(x)∥}

and θj(x) =
√
∥∇hj(x)∥2 + ∥∇l(x)∥2, respectively. However, in this paper, θj is defined

as in (A4).
In [23], an accelerated hybrid steepest-descent algorithm has been proposed for proxi-

mal split feasibility problems. However, a strong convergence result is obtained assuming
that {(I − proxλg)xn} is bounded, which is a strong assumption.

Question: Can we adapt and extend the findings in [6, 8, 23] to introduce a new
steepest-descent type algorithm for solving the SSMP associated with convex nonsmooth
functions in such a way that (1) the algorithm utilizes a self-adaptive step size mechanism,
eliminating the need for prior information about the operator norm and (2) we establish
and prove a strong convergence theorem under certain weakened assumptions for the
proposed algorithm?

This paper aims to present a steepest-descent algorithm with a modified approach
and simplified parameter restrictions to address the SSMP. Specifically, drawing inspi-
ration from previous studies, a new proximal-type algorithm is introduced in this paper
to determine the minimum norm solution of the SSPM for nonsmooth functions. The
iterative algorithm outlined in this paper offers a fresh perspective on solving the afore-
mentioned problem, building upon and enhancing existing findings. In contrast to the
methods outlined in [6, 8], the newly proposed approach incorporates a self-adaptive step
size mechanism, representing an advancement and broadening of the step sizes discussed
in [6, 8]. Additionally, the inclusion of appropriate assumptions enables the generation of
a sequence that converges strongly to the minimum norm solution of SSMP.

The structure of this paper is as follows: Section 2 covers essential preliminaries.
Section 3 introduces our novel proximal-type algorithm utilizing the the settings li, ∇li,
l, ∇l, hj , ∇hj , and θj under the conditions (A1)-(A4), along with the proof of its strong
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convergence. Additionally, we provide some insights on the theoretical perspective and
structural framework of our proposed algorithm in contrast to some existing findings.
Finally, in Section 4, we evaluate the numerical performance of our new algorithm in
comparison to the algorithms discussed in [6] and [8].

2. Preliminary

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. The
metric projection on C is a mapping PC : H → C defined by

PC(x) = argmin{∥y − x∥ : y ∈ C}, x ∈ H.

Lemma 2.1. [3] Let C be a closed convex subset of H. Given x ∈ H and a point z ∈ C,
then z = PC(x) if and only if ⟨x− z, y − z⟩ ≤ 0, ∀y ∈ C.

Let T : H → H. Then,

(i) T is L-Lipschitz if there exists L > 0 such that

∥Tx− Ty∥ ≤ L∥x− y∥, ∀x, y ∈ H.

If L ∈ (0, 1), then we call T a contraction. If L = 1, then T is called a nonexpan-
sive mapping.

(ii) T is firmly nonexpansive if

∥Tx− Ty∥2 ≤ ∥x− y∥2 − ||(I − T )x− (I − T )y∥2, ∀x, y ∈ H,

which is equivalent to

∥Tx− Ty∥2 ≤ ⟨Tx− Ty, x− y⟩, ∀x, y ∈ H.

If T is firmly nonexpansive, I − T is also firmly nonexpansive.

Lemma 2.2. [3] Let H be a real Hilbert space. Then,

∥x+ y∥2 = ∥x∥2 + ∥y∥2 + 2⟨x, y⟩, ∀x, y ∈ H.

Lemma 2.3. [10] Let M ∈ N and {aj}Mj=k ⊂ R, where k is a fixed nonnegative integer
with k + 1 ≤ M . Then the following holds:

ak +

M∑
j=k+1

aj

j−1∏
t=k

(1− at) +

M∏
t=k

(1− at) = 1.

Lemma 2.4. [10] Let w be arbitrary element of a real Hilbert space H. Let M ∈ N and k
is a fixed nonnegative integer such that k+1 ≤ M . Let {vj}Mj=k ⊂ H and {aj}Mj=k ⊂ [0, 1].
Define

z = akw +

M∑
j=k+1

aj

j−1∏
t=k

(1− at)vj−1 +

M∏
t=k

(1− at)vM .

Then, for any u ∈ H, we have

∥z − u∥2≤ ak∥w − u∥2 +
M∑

j=k+1

aj
j−1∏
t=k

(1− at)∥vj−1 − x̄∥2

+
M∏
t=k

(1− at)∥vM − u∥2

−ak

[ M∑
j=k+1

aj
j−1∏
t=k

(1− at)∥vj−1 − w∥2 +
M∏
t=k

(1− at)∥vM − w∥2
]
.
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Lemma 2.5. [13] Let {dn} be the sequence of nonnegative numbers such that

dn+1 ≤ (1− αn)dn + αnϑn,

where {ϑn} is a sequence of real numbers bounded from above and 0 ≤ αn ≤ 1 and
∞∑

n=1
αn = ∞. Then it holds that

lim sup
n→∞

dn ≤ lim sup
n→∞

ϑn.

3. Main result

In this section, we introduce our suggested algorithm to solve SSPM for M ≥ 2 and
demonstrate its strong convergence theorem under the assumptions in Assumption 1.

Assumption 1: Let {αn}, {βn} and {η(j)n }∞n=1 (j ∈ {1, . . . ,M}) be real sequences
satisfying the following conditions:

(C1) 0 < αn < 1, lim
n→∞

αn = 0 and
∞∑

n=0
αn = ∞;

(C2) 0 < β ≤ βn ≤ δ < 1;

(C3) 0 < η
(j)
n < 1 for each j ∈ {1, . . . ,M} with

(C3a) lim inf
n→∞

η
(j)
n

j−1∏
t=1

(1− η
(t)
n ) > 0 for each j ∈ {1, . . . ,M − 1},

(C3b) lim inf
n→∞

M∏
t=1

(1− η
(t)
n ) > 0.

With the help of li, ∇li, l, ∇l, hj , ∇hj , and θj under the conditions (A1)-(A4) and
the mild parameter assumptions outlined in Assumption 1, we are ready to introduce our
new proximal-type algorithm, along with the proof of its strong convergence theorem.

Algorithm 1

Initialization: Choose x1 ∈ H1. Let {αn}, {βn}, and {η(j)n }∞n=1 (j ∈ {1, . . . ,M})
be real sequences satisfying Assumption 1. Compute the following iterative steps for
n = 1, 2, 3, . . . .

Step 1: Evaluate yn = (1− αn)xn.
Let Ψn = {j ∈ {1, . . . ,M} : hj(yn) + l(yn) ̸= 0}.

Step 2: For a small ϵ(j) > 0 (j ∈ {1, . . . ,M}), choose µ
(j)
n such that if j ∈ Ψn and

θj(yn) ̸= 0

µ(j)
n ∈

(
ϵ(j),

hj(yn) + l(yn)

θ2j (yn)
− ϵ(j)

)
,

otherwise µ
(j)
n = µ(j), where µ(j) is a nonnegative real number.

Step 3: Find wj
n = yn − µ

(j)
n (∇hj(yn) +∇l(yn)) for j ∈ {1, . . . ,M}.

Step 4: Find

zn = η(1)n yn +

M∑
j=2

η(j)n

j−1∏
t=1

(1− η(t)n )w(j−1)
n +

M∏
t=1

(1− η(t)n )w(M)
n .

Step 5: Evaluate xn+1 = (1− βn)yn + βnzn.
Step 6: If ∇hj(yn) = 0 = ∇l(yn) for all j ∈ {1, . . . ,M} and xn+1 = xn, then the

iteration process stops, otherwise
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Step 7: Set n := n+ 1 and go to Step 1.

Remark 3.1. Note that Algorithm 1 uses a self-adaptive step size µ
(j)
n which does not

need any prior information of the operator norm.

Theorem 3.2. Assume Ω ̸= ∅ and the conditions in Assumption 1 are satisfied. The
sequence {xn} generated by Algorithm 1 converges strongly to x̂ ∈ Ω which is also the
minimum-norm solution of SSMP, i.e., x̂ = PΩ(0).

Proof. Let x̄ ∈ Ω. Since I −proxλfi and I −proxλgj are firmly nonexpansive, we have for
all x ∈ H1 that

⟨∇l(x), x− x̄⟩ = ⟨(I − proxλfi)x, x− x̄⟩ ≥ ∥(I − proxλfi)x∥
2 = 2l(x), (3.1)

and

⟨∇hj(x), x− x̄⟩ = ⟨A∗(I − proxλgj )Ax, x− x̄⟩
= ⟨(I − proxλgj )A(x), A(x)−A(x̄)⟩
≥ ∥(I − proxλgj )A(x)∥2 = 2hj(x). (3.2)

The definition of yn and Lemma 2.2 yields

∥yn − x̄∥2= ∥(1− αn)xn − x̄∥2 = ∥(1− αn)(xn − x̄)− αnx̄∥2
≤ (1− αn)∥xn − x̄∥2 − 2αn(1− αn)⟨xn − x̄, x̄⟩+ α2

n∥x̄∥2.
(3.3)

Using the definition of w
(j)
n , (3.1), (3.2), and Lemma 2.2, we have

∥w(j)
n − x̄∥2 = ∥yn − µ(j)

n (∇hj(yn) +∇l(yn))− x̄∥2

= ∥yn − x̄∥2 − 2µ(j)
n ⟨yn − x̄,∇hj(yn) +∇l(yn)⟩

+(µ(j)
n )2∥∇hj(yn) +∇l(yn)∥2

≤ ∥yn − x̄∥2 − 4µ(j)
n (hj(yn) + l(yn))

+(µ(j)
n )2∥∇hj(yn) +∇l(yn)∥2 (3.4)

= ∥yn − x̄∥2 − µ(j)
n

(
4(hj(yn) + l(yn))− µ(j)

n ∥∇hj(yn) +∇l(yn)∥2
)
. (3.5)

From (3.5) and the condition of µ
(j)
n , we get

∥w(j)
n − x̄∥ ≤ ∥yn − x̄∥, ∀j ∈ {1, . . . ,M}. (3.6)
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Using the definition of yn, (3.6) and Lemma 2.3 and 2.4 (for k = 1), we have

∥zn − x̄∥2 = ∥η(1)n yn +

M∑
j=2

η(j)n

j−1∏
t=1

(1− η(t)n )w(j−1)
n

+

M∏
t=1

(1− η(t)n )w(M)
n − x̄∥2

≤ η(1)n ∥yn − x̄∥2 +
M∑
j=2

η(j)n

j−1∏
t=1

(1− η(t)n )∥w(j−1)
n − x̄∥2

+

M∏
t=1

(1− η(t)n )∥w(M)
n − x̄∥2

−η(1)n

[ M∑
j=2

η(j)n

j−1∏
t=1

(1− η(t)n )∥w(j−1)
n − yn∥2

+

M∏
t=1

(1− η(t)n )∥w(M)
n − yn∥2

]
≤ η(1)n ∥yn − x̄∥2 +

M∑
j=2

η(j)n

j−1∏
t=1

(1− η(t)n )∥yn − x̄∥2

+

M∏
t=1

(1− η(t)n )∥yn − x̄∥2

−η(1)n

[ M∑
j=2

η(j)n

j−1∏
t=1

(1− η(t)n )∥w(j−1)
n − yn∥2

+

M∏
t=1

(1− η(t)n )∥w(M)
n − yn∥2

]
≤ ∥yn − x̄∥2 − η(1)n

[ M∑
j=2

η(j)n

j−1∏
t=1

(1− η(t)n )∥w(j−1)
n − yn∥2 (3.7)

+

M∏
t=1

(1− η(t)n )∥w(M)
n − yn∥2

]
.

From (3.7), we have

∥zn − x̄∥ ≤ ∥yn − x̄∥. (3.8)

The definition of xn+1 and (3.8) implies

∥xn+1 − x̄∥2 = ∥(1− βn)yn + βnzn − x̄∥2

= (1− βn)∥yn − x̄∥2 + βn∥zn − x̄∥2 − βn(1− βn)∥yn − zn∥2

≤ ∥yn − x̄∥2 − βn(1− βn)∥yn − zn∥2. (3.9)

From the definition of xn+1, we obtain

zn − yn = 1
βn

(xn+1 − yn),
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consequently,

∥zn − yn∥2 = αn

βn

(
∥xn+1−yn∥2

αnβn

)
. (3.10)

By (3.9) and (3.10), we obtain

∥xn+1 − x̄∥2≤ ∥yn − x̄∥2 − 1−βn

βn
∥xn+1 − yn∥2. (3.11)

In view of (3.11) and definition of yn, we have

∥xn+1 − x̄∥ ≤ ∥yn − x̄∥= ∥(1− αn)xn − x̄∥
≤ (1− αn)∥xn − x̄∥+ αn∥x̄∥
≤ max{∥xn − x̄∥, ∥x̄∥}
...
≤ max{∥x1 − x̄∥, ∥x̄∥}.

Therefore, {xn} is bounded. Consequently, {yn} and {zn} are also bounded.
Thus (3.3) and (3.11) implies

∥xn+1 − x̄∥2≤ ∥yn − x̄∥2 − 1−βn

βn
∥xn+1 − yn∥2

≤ (1− αn)∥xn − x̄∥2 − αn

(
2(1− αn)⟨xn − x̄, x̄⟩

−αn∥x̄∥2 + 1−βn

αnβn
∥xn+1 − yn∥2

)
= (1− αn)∥xn − x̄∥2 − αnΓn

where

Γn = 2(1− αn)⟨xn − x̄, x̄⟩ − αn∥x̄∥2 + 1−βn

αnβn
∥xn+1 − yn∥2.

Since {xn} is bounded and so it is bounded below. Hence, Γn is bounded below. Fur-
thermore, using Lemma 2.5, we have

lim sup
n→∞

∥xn − x̄∥2 ≤ lim sup
n→∞

(−Γn) = − lim inf
n→∞

Γn. (3.12)

Therefore, lim inf
n→∞

Γn is finite. Now, using (C1) of Assumption 1, we get

lim inf
n→∞

Γn= lim inf
n→∞

(
2(1− αn)⟨xn − x̄, x̄⟩ − αn∥x̄∥2 + 1−βn

αnβn
∥xn+1 − yn∥2

)
= lim inf

n→∞

(
2⟨xn − x̄, x̄⟩+ 1−βn

αnβn
∥xn+1 − yn∥2

)
.

Since {xn} is bounded, there exists a subsequence {xnk
} of {xn} such that xnk

⇀ p in
H1 and

lim inf
n→∞

Γn = lim inf
k→∞

(
2⟨xnk

− x̄, x̄⟩+ 1−βnk

αnk
βnk

∥xnk+1 − ynk
∥2
)
. (3.13)

Since {xn} is bounded and lim inf
n→∞

Γn is finite, we have that
1−βnk

αnk
βnk

∥xnk+1 − ynk
∥2 is

bounded. Also, by (C2) of Assumption 1, we have 1−βn

αnβn
≥ 1−δ

αnβn
> 0 and so we have

that 1
αnk

βnk
∥xnk+1 − ynk

∥2 is bounded. Observe from (C1) and (C2) of Assumption 1,

we have

0 <
αnk

βnk

≤ αnk

β
→ 0, k → ∞.

Therefore, we obtain from (3.10) and
αnk

βnk
→ 0, k → ∞ that

∥ynk
− znk

∥ → 0, k → ∞. (3.14)
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From the definition of xn+1 and (3.14), we have

∥xnk+1 − ynk
∥ = βnk

∥ynk
− znk

∥ → 0, k → ∞, (3.15)

and using the definition of yn, we obtain

∥ynk
− xnk

∥ = αnk
∥xnk

∥ → 0, k → ∞. (3.16)

Hence, (3.15) and (3.16) gives

∥xnk+1 − xnk
∥ ≤ ∥xnk+1 − ynk

∥+ ∥ynk
− xnk

∥ → 0, k → ∞.

Now, using (3.7), we obtain

η(1)nk

[ M∑
j=2

η(j)nk

j−1∏
t=1

(1− η(t)nk
)∥w(j−1)

nk
− ynk

∥2 +
M∏
t=1

(1− η
(t)
n−k)∥w

(M)
nk

− ynk
∥2
]

≤ ∥ynk
− x̄∥2 − ∥znk

− x̄∥2

≤ (∥ynk
− x̄∥ − ∥znk

− x̄∥)(∥ynk
− x̄∥+ ∥znk

− x̄∥)
≤ ∥ynk

− znk
∥(∥ynk

− x̄∥+ ∥znk
− x̄∥). (3.17)

Therefore, (3.14), (3.17) and (C3) of Assumption 1 gives

η(1)nk

[ M∑
j=2

η(j)nk

j−1∏
t=1

(1−η(t)nk
)∥w(j−1)

nk
−ynk

∥2+
M∏
t=1

(1−η(t)nk
)∥w(M)

nk
−ynk

∥2
]
→ 0, (3.18)

as k → ∞. Hence, (C3) of Assumption 1 together with (3.18) yields

∥w(j)
nk

− ynk
∥ → 0, k → ∞ (3.19)

for all j ∈ {1, . . . ,M}. Using the definition of w
(j)
n and (3.19), we have

(µ(j)
nk

)2∥∇hj(ynk
) +∇l(ynk

)∥2 = ∥w(j)
nk

− ynk
∥2 → 0, k → ∞. (3.20)

Now from (3.4), we have

4µ
(j)
nk (hj(ynk

) + l(ynk
))

≤ ∥ynk
− x̄∥2 − ∥w(j)

nk − x̄∥2 + µ
(j)
nk ∥∇hj(ynk

) +∇l(ynk
)∥2

≤ ∥ynk
− w

(j)
nk ∥(∥ynk

− x̄∥ − ∥w(j)
nk − x̄∥) + µ

(j)
nk ∥∇hj(ynk

) +∇l(ynk
)∥2.

(3.21)

Therefore, from (3.19), (3.20) and (3.21), we obtain

4µ(j)
nk

(hj(ynk
) + l(ynk

)) → 0, k → ∞. (3.22)

Note that if j /∈ Ψnk
, then hj(ynk

)+ l(ynk
) = 0 implying that hj(ynk

) = 0 and l(ynk
) = 0.

Now for j ∈ Ψnk
(i.e., hj(ynk

) + l(ynk
) ̸= 0), using the choice on µ

(j)
nk given by

µ(j)
nk

∈
(
ϵ(j),

hj(ynk
) + l(ynk

)

θ2j (ynk
)

− ϵ(j)
)
,

and from (3.22), we have

0 < 4ϵ(j)
(
hj(ynk

) + l(ynk
)
)
≤ 4µ(j)

nk
(hj(ynk

) + l(ynk
)) → 0, k → ∞. (3.23)

Consequently, (3.23) gives

lim
k→∞

(hj(ynk
) + l(ynk

)) = 0 ⇔ lim
k→∞

hj(ynk
) = lim

k→∞
l(ynk

) = 0
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for all j ∈ {1, . . . ,M}. Thus, from the definition of l(ynk
), we can have

lim
k→∞

hj(ynk
) = lim

k→∞
li(ynk

) = 0, ∀i ∈ {1, . . . , N},∀j ∈ {1, . . . ,M}.

Using CauchySchwarz inequality, we have

⟨ynk
, y⟩ = ⟨ynk

− xnk
, y⟩+ ⟨xnk

, y⟩ ≤ ∥ynk
− xnk

∥∥y∥+ ⟨xnk
, y⟩ (3.24)

for all y ∈ H. Now, from xnk
⇀ p, (3.16), and (3.24), we have ynk

⇀ p. The lower-
semicontinuity of hj(.) implies that

0 ≤ hj(p) ≤ lim inf
k→∞

hj(ynk
) = lim

k→∞
hj(ynk

) = 0.

That is, hj(p) =
1
2∥(I − proxλgj )Ap∥2 = 0 for all j ∈ {1, . . . ,M}, i.e., 0 ∈ ∂gj(Ap) for all

j ∈ {1, . . . ,M}. In other words, Ap is a minimizer of each gj for all j ∈ {1, . . . ,M}.
Likewise, the lower-semicontinuity of li(.) implies that

0 ≤ li(p) ≤ lim inf
k→∞

li(ynk
) = lim

k→∞
li(ynk

) = 0.

That is, li(p) = 1
2∥(I − proxλfi)p∥

2 = 0 for all i ∈ {1, . . . , N}, i.e., 0 ∈ ∂fi(p) for
all i ∈ {1, . . . , N}. In other words, p is a minimizer of each fi for all i ∈ {1, . . . , N}.
Therefore, p ∈ Ω.
Take x̂ = PΩ(0), i.e., x̂ ∈ Ω and ∥x̂∥ ≤ ∥y∥ for all y ∈ Ω. Thus, from (3.13), we obtain
that

lim inf
n→∞

Γn = lim inf
k→∞

(
2⟨xnk

− x̂, x̂⟩+ 1− βnk

αnk
βnk

∥xnk+1 − ynk
∥2
)

≥ 2 lim inf
k→∞

⟨xnk
− x̂, x̂⟩

≥ 2⟨p− x̂, x̂⟩ = 2⟨p− x̂, x̂− 0⟩ ≥ 0. (3.25)

Hence, we have from (3.12) and (3.25) that

lim sup
n→∞

∥xn − x̂∥2 ≤ lim sup
n→∞

(−Γn) = − lim inf
n→∞

Γn ≤ 0.

Therefore, ∥xn − x̂∥ → 0 and this implies that {xn} converges strongly to x̂. This
completes the proof.

Remark 3.3. (i) Our algorithm, Algorithm 1, works only for M ≥ 2. Moreover,
Algorithm 1 can be taken as an improved and extended version of accelerated
hybrid steepest-descent algorithm in [4, 11, 23].

(ii) Compared to the algorithms in [2, 5–8], our algorithm uses different scheme and
it does not require control sequence {ρn} with the condition 0 < ρn < σ and
lim inf
n→∞

ρn(σ − ρn) > 0 (for some σ > 0).

(iii) Our iterative method provides a convenient method to solve split type problems
that can be studied as a fixed point of firmly nonexpansive mappings; for example,
split system of inclusion problem, multiple-set split feasibility problem and split
system of equilibrium problem.
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4. Numerical experiments

In this section, we provide a numerical example to validate our proposed iterative
method, Algorithm 1 (Alg-1). On top of that, we compare Alg-1 with two existing re-
sults, namely, the parallel proximal algorithms [6] (PPA-[6]) and [8] (PPA-[8]) for SSMP.

Example 4.1. Consider the problem (1.2) for H1 = Rp, H2 = Rq, A : H1 → H2 and

fi(x) =
1

2
xTBix+ xTDi, i ∈ {1, . . . , N},

g1(u) = ∥u∥ and g2(u) =

q∑
k=1

h(uk) and A = Gq×p,

where Gq×p is q × p matrix, each Bi is invertible symmetric positive semidefinite p × p
matrix and each Di is vector in Rp for all i ∈ {1, . . . , N}, u = (u1, u2, . . . , uq) ∈ Rq, ∥.∥
is the Euclidean norm in Rq and h(uk) = max{|uk| − 1, 0} for k = 1, . . . , q.

In this example, we examine the numerical performance of Alg-1 compare to PPA-[6]
and PPA-[8]. For this purpose, we used the following data:

• Gq×p is randomly generated q × p matrix,
• M = 3, Bi is randomly generated invertible symmetric positive semidefinite p×p

matrix and Di is zero vector in Rp,
• proximal of fi and gj with scaling parameter λ = 1,
• parameter restrictions:

Alg-1: αn = 1
n+1 , βn = 2n+1

3n+6 , η
(j)
n = 1

j+1 ,

PPA-[6]: αn = 1
n+1 , βn = 2n+1

3n+6 , δ
i
n = i

6 , ξ
j
n = j

3 , ρn = 1
10 ,

PPA-[8]: F : H1 → H1, V : H1 → H1 where V = F = I, µ = 1, γ = 0.5,

αn = 1
n+1 , ρn = 0.1, δin = i

6 , ξ
j
n = j

10 ,

• Stopping Criterion: ∥xn+1−xn∥
∥x2−x1∥ ≤ TOL = 10−3.

For a randomly generated starting point x1 and different choices of p and q, the nu-
merical results of Alg-1, PPA-[6], and PPA-[8] is reported in Table 1 in terms of number
of iterations (iter(n)) and cpu time of excursion in seconds (Cpu(s)).

Table 1. Numerical results for randomly generated starting point x1.

p = q = 2 p = 3, q = 5 p = 15, q = 10

Alg-1
Iter(n) 13 15 16
Cpu(s) 0.00354 0.00654 0.08034

PPA-[6]
Iter(n) 12 17 16
Cpu(s) 0.00293 0.00597 0.07429

PPA-[8]
Iter(n) 21 27 29
Cpu(s) 0.01069 0.01638 0.096425

Also, for different choices of x1, p, and q, the numerical results of Alg-1, PPA-[6], and
PPA-[8] is reported Figures 1 and 2.
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Figure 1. For p = q = 15 and starting point x1 = (10, . . . , 10) ∈ Rp.

 

 

Figure 2. For p = q = 50 and starting point x1 = (100, . . . , 100) ∈ Rp.

Remark 4.2. (i) Based on the findings in Example 4.1, it is evident that our algo-
rithm demonstrates effectiveness and simplicity in implementation.

(ii) The data presented in Table 1 illustrates that our proposed algorithm outperforms
the one used in PPA-[8] in terms of CPU time and iteration count. Additionally,
the preliminary numerical experiment outcomes indicate that our algorithm per-
forms competitively compared to PPA-[6]. And it is important to underline that
our new method extends and generalizes the findings in [6] in such a way that
the algorithm utilizes a self-adaptive step size mechanism, eliminating the need
for prior information about the operator norm, which enables us to establish and
prove a strong convergence theorem under certain weakened assumptions to solve
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the SSPMs related to convex nonsmooth functions. This shows that our new
method is easier to implement.

Conclusions

A new self-adaptive steepest-descent type algorithm, Algorithm 1, is proposed in this
paper to solve the SSPM for convex nonsmooth functions. The algorithm includes a
self-adaptive step size mechanism and, under certain assumptions, a strong convergence
result (Theorem 3.2) is established and proven for the proposed algorithm. Specifically,
the sequence generated by Algorithm 1 strongly converges to the minimum norm element
of the SSPM. To validate the performance and implementation of the algorithm, a nu-
merical example (Example 4.1) is provided. The results of Example 4.1 demonstrate the
effectiveness and simplicity of the algorithm’s implementation. Furthermore, preliminary
numerical experiment outcomes suggest that the algorithm performs competitively when
compared to PPA-[6]. Additionally, the data presented in Table 1 shows that the pro-
posed algorithm outperforms the one used in PPA-[8] in terms of CPU time and iteration
count. The main result of this paper extends and improves the results [23]. Furthermore,
our result complements recent results in this area.
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