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1. INTRODUCTION

The split feasibility problem (SFP) which was introduced by Censor and Elfving [1] is
stated as follows. Let C' and @) be nonempty, closed, and convex subsets of real Hilbert
spaces Hy, and Hs, respectively and T : H; — Hs be a bounded linear operator. The
split feasibility problem (SFP) is to find a point

x* € C such that Tz* € Q. (1.1)

The SFP provides a unified model for many inverse problems which have many real life
applications such as medical image reconstraction and signal processing (see [2, 3]). Due
to its immense potential several generalizations of the SFP have been studied by many
authors, see, for instance, the multiple-sets SFP (MSSFP) [1-6(], the SFP with multiple
output sets (SFPMOS) [7-12], the split variational inequality problem (SVIP) [11, 13, 14],
the multiple-sets split variational inequality problem (MSSVIP) [15], the split variational
inequality problem with multiple output sets (SVIPMOS) [16], and the multiple-sets split
feasibility problem with multiple output sets (MSSFPMOS) [17, 18].

In 2021, Kim et al. [18], introduced the following MSSFPMOS in general Hilbert
spaces: Let C;, 1 =1,2,...,s,and Q;;, 7 =1,2,...,p, k=1,--- ,r; be nonempty, closed
and convex subsets of real Hilbert spaces H and Hj, respectively, and T; : H — H; be
bounded linear operators. The MSSFPMOS is to find an element z* such that

ot e = (c = m;;lci) N (m;zl ;! ( N, ij)) £ 0. (1.2)

In 2023, Reich and Tuyen [19, 20] developed self adaptive algorithms for solving the
split feasibility problem with multiple output sets which is a special case of the gen-
eralized Fermat-Torricelli problem and proved strong and weak convergence theorems.
The important advantage of these algorithms is that they do not use the least square
approximation unlike most algorithms.

Motivated by the above works specially that of Riech and Tuyen [19] and Kim et al.
[18], we propose inertial self-adaptive relaxed CQ-algorithms for solving the MSSFPMOS
(1.2) and prove their corresponding strong convergence.

The rest of this paper is organized as follows. We begin by stating some basic definitions
and lemmas in Section 2. We give convergence analysis of our proposed algorithms in
Section 3. We provide a numerical experiment in Section 4 to validate our proposed
algorithms.

2. PRELIMINARIES

This section states some notations, definitions, and lemmas which are required in the
proofs of our theorems.

The weak w-limit set of {¢,} is given by

we(tn) = {t € H : I{ty, } C {tn} such that t,, — t}.
Let C be a nonempty closed convex subset of a real Hilbert space H.
A mapping S : C' — C is called nonexpansive on C' if
ISu — Sv|| < ||lu—2|, Yu,v € C.
It is well known that for every element a; € H, there exists a unique nearest point in C,
denoted by Pc(aq) such that
lay — Po(aq)|| = min{||a; — azl| : a2 € C}.
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The operator Po : H — C' is called a metric projection of H onto C. It has got important
characterization shown below:

(a1 — Pcay, a2 — Poar) <0, (2.1)

for all a; € H and as € C. We can deduce from (2.1) that the operator Px is a nonex-
pansive mapping.

Lemma 2.1. (see [21]) For all a1,as € H, the following inequalities hold.

(1) [[Pe(a1) = Po(az)|* < (Pc(a1) — Pe(az), a—b);
(2) (a1 — as,(I — Pc)as — (I — Po)az) > (I - Po)ay — (I — Pc)as|?.

Definition 2.2. (see [21]) A g : H — (—00, +00] be a given function. Then g is o-strongly
convex if

o
g(dar + (1 = 0)az) + 58(1 = §)lar — az]|* < dg(ar) + (1= d)g(az),
for all § € (0,1) and for all aj,as € H where o > 0.

Lemma 2.3. (see [21]) Let g : H — (—o0,+00] be a p-strongly convex function. Then
0
9(b) = gla) + (& b—a) + S llb—al*, & € dg(a),
for all a,b € H.

Lemma 2.4. (see [22, 23]) Let {s,} and {y,} be sequences of nonnegative real numbers,
such that

Sn+1 S (]- - Un)sn + En +7n7 n Z 13

where {o,} C (0,1) and {e,} is a real sequence. Assume thaty v, < oo. Then the
following results hold:

(1) Ifen, < 0, M for some M >0, then {s,} is a bounded sequence;

(2) If >0  yon = o0 and 1imsup§—z < 0, then s,, — 0 as n — oo.

n— oo

Lemma 2.5. (see [24]) Let {s,} be a non-negative real sequence, such that

5n+1 é (]- - Un)sn + Un/ina n Z 17
8n+1 S sn_¢n+§0n> TLZ 17

where {0y} C (0,1), {¢n} C [0,00), and {pn}, {¢n} C (—00,00). In addition, suppose
the following conditions hold.

(1) 202100 = o0
(2) lim ¢, = 0;
n—oo
(3) lim ¢y, = 0 implies imsup pu,, <0 for every subsequence {n;} of {n}.
k—o0 k— o0
Then, lim s, = 0.
n— o0
Lemma 2.6. [25] Let {sx} C (0,00), {tx} C (—00,00), and {ux} C (0,1) satisfying
Yooy uk =00, and sgp1 < (1 —ug)sg +ugty, Vk > 1. If limsup,_, o tx, < 0 and for every
subsequence {si,} of {sk}, Iiminf; ,oc(Sk,+1 — Sk;) > 0, then limy o0 s = 0.
— © 2024 The authors. Published by https://doi.org/10.58715/bangmodjmcs.2024.10.2
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3. MAIN RESULTS

In this section, we state our algorithms and analyze their convergence. For simplicity
let Jy :={1,2,...,s}, Jo:={1,2,...,p}, and J3 := {1,2,...,7;}.
We take the following assumptions to undergo the analysis.

(C1) The nonempty level sets C' and @ in the MSSFPMOS (1.2) are defined as follows

Ci={x € H:¢(x) <0} and Qjr ={y € Hj : qjr(y) <0}, (3.1)

where ¢; : H — (—o00,+00] for all ¢ € J; and ¢, : H; — (—00,+00] for all
J € Ja, k € J3 are w;-strongly and wj-strongly convex subdifferentiable function,
respectively. Then ¢; and gj; are also lower semicontinuous (See, [21] Theorem
9.1)

(C2) Let ¢; and gj), defined in (3.1), respectively. Assume that at least one subgradient
& € Oci(x) and pjr € Oqji(y) can be computed for any x € H and y € Hj.
Moreover, both Jc;(i € Ji) and Ogjx(j € Ja,k € Js) are bounded operators
(bounded on bounded sets). The sets Cf' (i € J1) and Q};, (j € J2,k € J3) are
constructed as follows:

O = {o € H: cxlwn) +{60, @ —2a) + ' llo — wal” <0}, (3.2)
where &' € dc¢;(zy,) and

n n Wi

ik = {y € Hj : qj(Tjzn) + (0, y = Tywn) + 5y — Tianl® < o}, (3.3)

where 0}y € gk (Tjan).
Now, we introduce our proposed algorithms for solving the MSSFPMOS (1.2).

Algorithm 1 A strongly convergent method with double inertial steps for solving the
MSSFPMOS (1.2)

Step 0. Choose the sequences {o,} C [0,1), {pn} C (0,2), and {6,} C [0,1). Take the
weights o' (i € J1) > 0 and the constant parameters S, (j € J2,k € J3) > 0 such that

Za? =1 and irgf aj > a >0, where I, = {i € J1 : aj > 0}. (3.4)
iel,
=1
Select initial points to,t1 € C. Assume that ¢, has been constructed.
Step 1. For t,—1 and ¢, , choose 6 € (0,1) such that 0 < 6, < 6, where

€n .
_ Lo — £ty # ta1,
On = {mln{ [Itn — tn—l\l} i # s (3.5)

0 otherwise,
where e, C (0,00) such that lim = =0.
n—oo ° N

Step 2. Compute

Wn = by + On(tn — tn_1). (3.6)
Step 3. Compute
U = (1 — on)wn. (3.7)
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Step 4. Compute
(IHJ - P ) Tjv,
G = || (o - 25 ) e
0 if Tjvn, € QY

for all j € Jy and k € J3.
Step 5. If Zf,I S, BixT;d%, = 0, then stop. If not, compute t,1 via

ty1 = Za Per (vn THZZﬁJkT djk> (3.9)

j=1k=1

where C7' and Q7 are defined as in (3.2) and (3.3), respectively and
a2 o Bk fin(Tyon)
n o= ] D)
’Z?:l Dok ﬁjij*d?k H

where fji(v) = H <IHJ' — Pg;{k) (U)H for all v € H; and for all j € Jo,k € Js.

, (3.10)

Step 6. Set n:=mn+ 1 and return to Step 1.

Proposition 3.1. In Algorithm 1, if Z?:l S, BikT;d}y, = 0, then vy, is a solution to
the MSSFPMOS (1.2).

Proof. For each n, let A, = {(j,k) : dJ;, # 0}.

Following the same line of proof as in Proposition 6 of [26], we get H (I Hi PQn ) Tjv,

0 for all (j,k) € A, which in turn implies that Tjv, € Q7 for all (j,k) € A,. If (j, k) ¢
Ay, then df, = 0 which in turn implies that Tjv, € Q7. Consequently, Tjv, € Q7 for
all j € Jp and k£ € J3. Now, since v, € C}' and Tjv,, € Q?k for all j € Jo,k € J3, we
conclude that vy, is a solution to the MSSFPMOS (1.2). |

Next, we analyze the convergence of Algorithm 1.

Theorem 3.2. Let Q # (0. Then the sequence {t,} generated by Algorithm 1 converges
strongly to a point t* = Pq0 under the following conditions.

(A1) {on} C[0,1) such that hm o, =0 and Z Op = 00.
k=0
(A2) {pn} C (0,00) such that O < p <inf, p, <sup,, pp <P < 2.

Proof. Let t* € €, then we have

2
p Ty
j=1k=1
2
p Ty
— * Jn
= || =t =T 3D BTy djy
j=1 k=1

© 2024 The authors. Published by https://doi.org/10.58715/bangmodjmcs.2024.10.2
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p T 2 p T
= ow =t 17+ 72 D2 BTy, —2Tn<2 BjkT;d;?k7un—t*>
j=1k=1 j=1k=1
2
p T
= Nlon =P+ 72 | DD BTy dy|| — 2 B (Ty v — )
Jj=1k=1 (j,k)eA"
2
p Tj
= oo =t + 72 Z BikT; || —2Tn Z Bjn (dy, Tjvp — Tit*)
J=1k=1 (J,k)eA,
2
p T
= an_t*”Z"'Ti ZZﬁjkT;d?k
j=1k=1

S m<‘

(J) )EAH J
2
p T
= ow =t 1P+ 72 DD BTy,
j=1k=1
- Py ) Tiv, — (ﬂﬁ - Pl ) Tt
. i
27y, Z 6jk 9 ,Tj’Un —Tjt
j I — p¥ T}
(4, k)EA, H( Qn, ) Un,
2
P T
< Moo=t S STy | <2 S0 (7 - PG ) T
j=lk=1 (G k)EAL
(3.11)
Substituting (3.10) into (3.11) and simplifying, we get
P T ?
Un = Tu 3 D B Tid =t < lon = 1P = pal2 = p)gin(vn)  (3.12)
j=1k=1
< lon — t*H2a (3.13)
2

2(jk)eA, Bjkfjk(T Un)

HZ(J k)eA, 5Jk ) ‘
By Lemma 2.1 (2), (3.9), and (3. 13) we also obtain

where g, (vy,)

© 2024 The authors. Published by  https://doi.org/10.58715/bangmodjmcs.2024.10.2
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s P
Iwsr =1 = || arPep (von =7 DD BTy i) — t*
i=1 j=1 k=1
s P T s
St (- X nzyan) - Yatrer|
i=1 j=1k=1 i=1
P
< low =7 > B Trdy, —t* (3.14)
j=1k=1
O (3.15)
Using (3.6), we have
Jwp =t = [|tn + Onltn — tn-1) — 7|
< th - t*ll + enth - tnle
* en
= |ltn —¢"|| +on [|tn - tn1||] . (3.16)
On
Using (3.7) and (3.16), we also obtain the following estimation
lon =] = [[(1 = on)(wn = 17) — ont™||
< (U= on)flwn = 7] + on[/t”]
< (1= o) [ltn — 1+ Onlltn — ta s ] + oullE"]
= (I =on)lltn =t + (L = 0n)0nlltn — tnall + on|[t"]]
* 9” *
< (U= on)litn = 1+ o [ = ltn = taall + 171 (3.17)
Therefore, we have from (3.15) and (3.17) that
* * 9’” *
[tnsr =t < (1= on)lltn = 7| + on [Utn = tnall+ 1t II] : (3.18)
n
Since lim,, oo g—“th — tp—1]] = 0, the sequence {g—"th — tn,1||} is bounded. Now,
setting
On .
Mo = maxq sup§ — |[tn — tn-1ll ¢, It ¢- (3.19)
neN ( On

We can see that all the conditions of Lemma 2.4 are satisfied and hence the sequence {||t,,—
t*||} is bounded. This in turn implies that the sequence {t,} is bounded. Consequently,
{wn}, {vn}, and {T)v,} (for each j € J,) are also bounded.

Using (3.6), we have

I

th + en(tn - tnfl) - t*||2
H(tn - t*) + gn(tn - tnfl)H2

lw,, — t*

< ltn = P+ 0311t — tam )P + 200 (tn — £, 0 — tar)
R o 0 R
< th -1 H2 +0on %”tn - tn—1||2 + QJth -1 Hth - tn—IH .
o; On

© 2024 The authors. Published by https://doi.org/10.58715/bangmodjmcs.2024.10.2
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Using (3.7) and (3.20), we have
[ = ¢°[1* = [[(1 = on)wn — ||

11 = on)(wn = t7) = out*|?

< (1 —=00)3lwn — t*)|* + 20, (v, — t*, —t*)
* (12 9% 2 9” *
< (A =on)ltn —t*" +on 7”tn —tn1l|" +2—|ltn — t*[lItn — tn-1ll
o2 on
+2||vn, =t || ||t*||] + 20, (th41 — %, —t"). (3.20)
Using (3.13), (3.14), and (3.20), we also obtain
p T 9
[tpsr — %2 < ‘ vn =70 SN BT — €
j=1k=1
< lon =11 = pu(1 = pn)gjn(vn)
2
* (12 0”
< = ol = 1P+ o (210 =t
0” * * * *
2= ltn = taalllltn = €711+ 2llon = taa |87 + 2087, s —17)
—Pn(2 = pn)gjk(vn)- (3.21)
Now, letting
sn = |tn — t*||2,
0 )
On = <n||tn - tn1> + 2 [ty — tn—a [t — 7]
On On
2o — gt ]+ 2=t — £),
On = Opdn, and
Hn = pn(2 - pn)gjk(vn)~
Now, (3.21) reduces to
Sna1 < (L—0n)8n +0n¢n and sp11 < (1 — 04)8n — fin + ©n. (3.22)
Assume, lim;_, o pn, = 0. It follows that

C 2Gkenn, Bikfik(Tivn,)
lhm L
o HE(J‘MeA"l BinTy di) ‘
for all (j,k) € A,,,. By using ||d;‘]lc|| =1forall j € .J, and k € J3, we get
2 oGkean, Birfin(Ton) 32 mea,, Bikfin(Tivn,)

ny

It follows from (3.24) that, - 1yea, Binfik(Tjvn,) = 0, or equivalently

ny

=0, (3.23)

0< T =

lim [[(I™ ~ PJ4) Tyon, || = 0,

l—o0 Q?

© 2024 The authors. Published by  https://doi.org/10.58715/bangmodjmcs.2024.10.2
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for all (j,k) € A,,.
From the definition of A,, and d7;, we have Tjv,, € Q}; when (j, k) ¢ Ap, and hence

(17 — Pg#L)ijm || = 0. As a result, we get
ik

lim [|(I% — P™%)Tv,, ]| =0, (3.24)
l—o0 ij
for all j € J; and k € J3.
Using (3.7), we get
lvn —tall = H(l_an)wn_th

||(1 = 0n)On(tn — tn-1) — Unt””
(1 - O'n)en |tn - tn—1|| + O'nthH

On
= ou|(1=0w) it = tas |+ Iitall]. (3.25)

IN

By Lemma 2.1 (2) and (3.9), we obtain

s P rj s
— § ng E E Al L § mwp
||tnz+1 — Uny ” = H Q; PCl."l (v’ﬂl - Ty BJij djk) a; PCi 1Un,
i=1 i=1

j=1k=1
poTi
< T | DD BuT i
j=1k=1
= Pngir(vn,)
< pgjk(vn,) = 0as l — oo, (3.26)
which implies that
lim ||tn, 41 — v, || = 0. (3.27)
l—o0
Moreover, since
thﬂrl - tnl ” < ”tnlJrl — Un, ” + ||vnl - tnl Ha
we obtain that
lHm ||tp,+1 — tn, || = 0. (3.28)
l—o0

Next, we need to show that wy(t,) C Q. Since {t,} is bounded, w,,(t,) # 0. Let
t € wy(ty). It follows that there exists a subsequence {t,,} of {¢,} such that ¢,, — .
Since ||vy, — ty]| — 0, we have v,, — ¢. Now, due to the linearity and boundedness of T7,
we have Tjv,, — Tjt.

We claim that ¢ € . To show this it is suffices to show that ¢ € C?* for all ¢ € J; and
T;(t) € Qfy for all j € Jo, k € J3.
From the assumption (C2), we can see that g, is bounded on bounded set for each
j € J2,k € J3. It follows that we can find a constant n > 0 such that ||77i|| < n, where
77?,2 € 0¢;,(Tjvy,) for each j € Jo, k € Js.

© 2024 The authors. Published by https://doi.org/10.58715/bangmodjmcs.2024.10.2
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Now, using (3.3), (3.24), and the fact that Pgik (ijnz> € Q7 we get

an(Tion) = (i Trow — Pagy (T )) = 5 [Tiom — Py (T ) |
B
<l ra e
< 77H<I—PQ;L£>TJ-UW - 0. (3.29)

Noting ¢, is weakly lower semi-continuous, it follows that
aie(Tit) < Timinf g (Tyon, ) < Jim nf| (1= Py ) Tyon,

for all j € Jo, k € J3. It turns out that, Tjt € Qj, for all j € Jo, k € Js.

Again, from the assumption (C2), we can see that dc¢; is bounded on bounded set
for each i € J;. It follows that there is a constant & > 0 such that ||| < &, where
&M € 0ci(vy,). That is the sequence {&"} is bounded.

By using (3.2) and (3.27), we have as | — oo that

:0’

ng Wi 2
Ci(vnl,) S <£z y Ung — tnl+1> - 7 Un; — tanrlH
B T
< €fon = taa]| 2 0. (3.30)

Noting ¢; is weakly lower semi-continuous, it follows that

¢i(t) < liminfc;(vy,,) < lim f’ Up, — tnz-&-lH =0,
l—o00 l—00

for all i € J;. Thus, t € CP', i.e., wy(t,) C Q for each i € J.
For t* = Pp0 and t,, — ¢ € Q, it follows from (2.1) that (—t*,# — t*) < 0. So,
lim sup(—t*, ¢, — t*) = limsup(—t*,t,, —t*) = (—¢*,t —¢*) < 0. (3.31)

n—oo l—o0

It follows from (3.28) and (3.31), that
limsup(—t*, tp41 — t*) = limsup((—t*, tp41 — tn) + (=", t,, — 7)) < 0, (3.32)

n—oo n—oo

and hence

) , 0 ) .
imsup o, = tmsup| (L2t — bl ) 2250, — ol —
0. On,

l—o0 l—o00 ny
+ 2ljvn =t [[l[E]] 4+ (=7 g1 — t*>] < 0.

Now, applying Lemma 2.5 to (3.21), we have that lim ||t,, —¢*|| = 0. This completes the
n—oo

proof of Theorem 3.2.
[ |

Our second proposed algorithm is given below.

— cs © 2024 The authors. Published by  https://doi.org/10.58715/bangmodjmcs.2024.10.2
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Algorithm 2 A strongly convergent viscosity type method for solving the MSSFPMOS
(1.2)

Step 0. Choose the sequences {on} C [0,1), {pn} C (0,2), and {6} C [0,1). Take the
weights af' (i € J1) > 0 and the constant parameters 3;, (j € J2,k € J3) > 0 such that

> al=1 and inf af > a >0, where I = {i € J : o} > 0}. (3.33)
1€1ly
i=1
Select initial points to,t1 € C'. Assume that t, has been constructed.

Step 1. For ¢, and t, , choose 6 € (0,1) such that 0 < 6,, < 6,, where

€n .
_ indg, " ftn # o1,
f, = mm{ "ltn —tn_lu} if tn 7 tn (3.34)

0 otherwise,

where €, C (0,00) such that lim £ =0.
n—oo ° M

Step 2. Given the iterates t,,_1,t, € H, then compute
Wn = tn + On(tn — tno1). (3.35)
Step 3. Compute

H; _ pHj ) .
(1 = P31 ) Tyw.

= 7)1
j It Pka Tjwn
0 if Tywn € QT

for all j € J; and k € Js.
Step 4. If Zle Z;J:l BixTj vy, = 0, then stop. If not, compute z, via

s p "
Zn =Y aiPon (wn —Ty Y ﬂjij*d;Lk> , (3.37)
i=1

j=1k=1

if Tywn ¢ Qi (3.36)

where C}' and Q7 are defined as in (3.2) and (3.3), respectively and
_ Pn Z§:1 Z;J:l Bik fir(Tjwn)

Tn 1= — (3.38)
HZZ’:l ijﬂ fBjij*d?k
where fjr(w) = H(]Hj — PZ;T{,C) (w) ’ for all w € H;, and for all j € J2,k € J3.
J
Step 5.
tnt1 = onV(tn) + (1 — 0n)2n, (3.39)

where v : H — C is a A-contraction mapping where A € [0, 1).
Step 6. Set n :=n + 1 and return to Step 1.

Theorem 3.3. Assume that Q # 0. Then the sequence {t,} generated by Algorithm 2
converges strongly to a point t* = Pqu(t*) under the assumption (A1) and (A2).
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Proof. Following the same steps as in getting inequalities (3.11) to (3.15), we get

S p T
len =t = | arPop (wn =7 323 BTy ) -
=1 k=1

i=1k=
< fwn—tlL (3.40)
By using (3.39) and (3.40), we have
[tngr =7 = lon(v(tn) = 17) + (1 = on)(zn — £7)||

Gallo(t) — ] + (1 = o120 — ¢°]
Gullv(ta) — o(t)| + oalloE) = £ + (1 an)l|za — ]
Aoulltn = 11+ oullo(t?) = €1 + (1 = o0)l|z0 — ]
Gallv(ta) = o(t) ]| + oulloE) = £ + (1 = an)l|z0 — ]
At — 1]+ aullo(t) 1] + (1 = o) lewn — ¢°]|.

IA AN IA A

(3.41)

Using (3.16) and (3.41), we have
* * 0774 * *
ltnir=t"l < [A=(=Non]lltn—t"ll+on | = tn —tn-sll+ o) =7l |. (3.42)
By the condition of o,, we have lim,, 3—"||tn —tn—1]] = 0. Hence, we can find a
constant M > 0 such that
O
|t —tnall < M.
o
Now, (3.42) becomes
Ftus =1 < (1= (1= n)oullltn — 1| + o [M + o(t) — £°]]
N M+ ||v(t) —t*
= - 0=t~ o+ o1 =g [ O =L

Proceeding inductively, we arrive at

M + [Jv(t*) — t*
[ max{|t1t*|, [[v(t) ||}7

L=
for all n > 1 which proves that {¢,} is bounded.
Again, using (3.39), we have
ltn+1 _t*”2 = lon(v(tn) —t*) + (1 —on)(zn _t*)H2
= llon(v(tn) = v(t") +v(t) = ") + (1 = o) (20 — t)|?
= lou(v(ta) = v(t*)) + (1 = 00) (20 — )] + 0w (v(t*) = )2
< low(v(ta) = o(t*) + (1 = o) (20 — )]+
+ 20, (v(t*) — ", tyy1 — 1)
onl[v(tn) = v()|* + (1 = on)llzn — £
+ 20, (v(t*) — ", tyy1 — )
ATnl[tn = 112 + (1 = on)||2n — £
+ 20, (V(t*) — %, tyyr — 7).

IN

IN

© 2024 The authors. Published by  https://doi.org/10.58715/bangmodjmcs.2024.10.2

e Publications TaCS-CoE, KMUTT Bangmod J-MCS 2024


https://doi.org/10.58715/bangmodjmcs.2024.10.2

22 S. Gebregiorgis, P. Kumam

(3.43)

Using the inequality(3.15) (after replacing t,1 for z, and w,, for v,), (3.20), and (3.43),
we get

ltwsr =12 < L= (1= Nou]lltn — 7]

0, 2 O, .
(”tntn—ln) +2<tntn_1|>”tn —t ||‘|
On On

—pn(1— pn)gjk(vn) + 20, (v(t*) — t*, thyr — 7).

+on

(3.44)
It follows that
pu(L = p)gin(vn) < ltn — 1 = [t — t*[|* + 00N, (3.45)
where
0, 2 On,
N = s { (2200 taal) 2l 0 22 =0l ) +20000) =t =
= On On
Let g, = |[t, — t*||* and

0 2 0
i (20t = taal) 200 = 21 22 = trca ) 20006) = st = ),
Then (3.44) becomes

Goir < [1= (1= Now|an + 0w (3.46)

Our next task is to show the strong convergence of the sequence {t,} to t*.
With out loss of generality, we can assume that ¢, has a subsequence {g,, } such that

liln_1>i£f(qm+1 —qn,) > 0. (3.47)

Passing limit supremum on both sides of (3.45) and using conditions (A1) and (A2), we
get

1
limsup gjk(vp,) < ——— <lim sup(gn, — qn,+1) + N limsup o, >
J l p(2 _ p) l 1+ l

l—o0 l—o00 1—00

= —liminf(gu,+1 — qn,) + N limsup oy,
l—o00 i—00

< 0.

It follows that

>0 Bjk fir(Tjwn,)
lim k€A TIRIRTI M (3.48)

l * JN
o qu,k)eAn, BT} dj) ‘
By an argument similar to the one used in the proof of Theorem 3.2, we obtain

lim [|(I% — P75)Tjwy,|| = 0, (3.49)
l—o0 ij

for all j € J; and k € Js.

Next, we show that w,(t,) C Q. Since {t,} is bounded, w.,(t,) # 0. Let T € wy(tn),
then we may assume that there exists a subsequence {t,,} of {t,} such that ¢,, — t.
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Furthermore, |z, — t,|| — 0, and hence z,, — ¢, and since T} is linear and bounded,
sznl — T}E

By the Banach contraction principle, there exists a unique point t* = Pou(t*). It then
follows from (2.1) that

(w(t") =tz —t") <0, (3.50)
for all z € Q. Next, we prove that limsup;_,, 7», < 0. Indeed, let t,, ~such that
limsup(v(t*) — t*,t,, —t*) = lm (v(t*) —t*,t,, —1t%). (3.51)
l—o0 m—r00 "

Again, by an argument similar to the one used in the proof of Theorem 3.2, we can
prove that ¢ is a solution of the MSSFPMOS (1.2). Thus, by using (3.50) and (3.51), we
get

(") =t t—t*) < 0. (3.52)
In order to prove that lim sup;_, .o 7n, < 0, we need to show that lim;_, o0 ||tn,+1 —tn,|| = 0.
Now, taking in to account the boundedness of {z,} and using (3.39), we obtain
[tnt1 —znll = onllv(ta) — 2zl
< onlllvla)ll + lIzal)
< on(llvltn) ="+ + [lzal) (3.53)
< onllvltn) = [ + [1£7]] + [lzn])
< oM+ N+ 7)) = 0,

where Ny = sup, {||v(t,) — t*||} and Ny = sup, {||yn||} < oo.
Using the definitions of z, and 7,, we obtain

s p T
len —tall = || aPer (wn Y @de;}k) —t
1=1

j=1k=1
s P Tj s
e (- S ) - Y P,
i=1 j=1k=1 i=1
P
< o= YD BTy — b
j=1k=1
P
<l = tall+ 7| S0 BTy |
j=1k=1
0, ; Bk firx(Tjwn)
< —litn =t +an(J’k)EA" e (3.54)
" Giyean BikTy djy) )
Using (3.34), (3.48), and (3.54), it follows that
lim ||z, — t,|| = 0. (3.55)
=00

Now, combining (3.53) and (3.55), we get
<

[tn+1 — to |l ltn+1 = 2|l + 120, =t |l = 0 as I — oo,
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that is
lim ||tp, 41 — tn, || = 0. (3.56)
l—o00
It follows from (3.52) and (3.56), that
lim sup(v(t*) — t*, tpy1 — t*)

n—oo

= limsup<<v(t*) - t*vtn+1 —tn + <U(t*) - t*vtn - t*>)

n—oo
< 0, (3.57)
and hence
lim sup vy,
l— o0
) 2
- hmsup[(’“tm - tm_ln) ol — ) ) — £t t*>}
=00 On, On,
< 0.

Hence, all the assumptions of Lemma 2.6 are satisfied. Therefore, we conclude that
t, — t*. This completes the proof of Theorem 3.3.
[ |

4. NUMERICAL EXPERIMENT

In this section, we show the validity of a special case of Algorithm 1 and Algorithm 2
(when k =1).

Example 4.1. Let H =R, H; = R?, Hy, =RN, Hy =RM H, =RE.

Let Ci={z R |z —01]? <13}, Co={z €eRY: |z — 02| <13}, C3={z € RS :
|z — 03]|? < r3}, and Cy = {x € RS : ||z — 04]|? < r?} where 04, 02, 03, 04 € RY and
ri,ro,r3,ry € R. Clearly C1,Cs,Cs, and Cy are nonempty closed and convex subsets of
H.

Let Q1 = {12 € R" : [Tz — 1] < 07}, Q2 = {Tow € RY : [ Toa — ¢o|* < 03}, Q5 =
{T3z € RM . | T30 —c3|? < 02}, and Q4 = {Tyz € RE : || Tyx —cy4? < 02} where ¢; € RE,
cz ERY, c3 € RM ¢y € RY and 01, 02, 03, 04 € R.

Let T3 : R® - RE 75 . RS — RN, Ty : RS — RM Ty : RS — RL where their entries
are randomly generated in the closed interval [—5, 5].

Now, we construct the balls CI* (i = 1,2,3,4) and Q7 (7 =1,2,3,4) given in (3.2) and
(3.3) of the sets C; and Q;, respectively, as follows.

For any z € R®, we have ¢;(z) = ||z — 0;||? — r? for i = 1,2,3,4 and ¢;(Tjz) =
| Tjz—c;|*—oF for j = 1,2,3,4. In what follows the subgradients £} and 7} of respectively
¢i(yn) and ¢;(Tjyn) can be calculated respectively at the points y,, and Ty, by &' (yn) =
2(yn — 0;) and 0} (Tjyn) = 277 (Tjyn — c;). The metric projections onto the balls C7'
(i=1,2,3,4) and Q7 (j = 1,2,3,4), can be easily calculated.

We randomly generate the coordinates of o; and c; in [—1, 1] and, r; and p; in [S, 25],
[R,2R], [N,2N], [M,2M], and [L,2L], respectively. We take the initial points as ty =
100(1,1,...,1)T € RY and t; = —10(1,1,...,1)T € RS,

The parameters are chosen in such away that for ¢ = 1,2, 3,4, we take o = 1—% and
@; = 0.5. For j = 1,2,3,4, we take 8; = &5 and w; = 1.5, p, = $25, 0n = 747,
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#=0.3, and ¢, = ﬁ We use Error, = |[t,s1 — ta||? < 1078 as a stopping criterion
in this example. The algorithms are coded in MATLAB 2023b on a personal computer
(13th Gen Intel(R) Core(TM) i7-1355U 1.70 GHz, and a 16.0 GB RAM). All results are

reported in Table 1, Table 2, Figure 1, and Figure 2.

TABLE 1. Numerical results of Algorithm 1 (when k = 1) for different
choices of S, R, N, M, L

Dimensions Iter. (n) CPU(s)  Errory
S=3,R=6,N=9,M=12L =15 136 0.002492  9.9209e-09
S=15,R=30,N =45, M =60,L =75 346 0.008785 9.9804e-09
S =30,R=060,N=90,M =120, L = 150 558 0.022037  9.9594e-09

S =100, R =200, N = 300, M = 400, L = 500 1517 0.809077  9.9800e-09

‘+5:13R:5u N =45,M =60,L =75

|—@—S=3R=GN=!J M=12L =15

Error,
Error,

10
10°
10710 i . i | i { 10 . . , \ | T,
20 40 60 80 100 120 140 0 50 100 150 200 250 300 350
Iter. (n) Iter. (n)
(a) (b)
104 T T r T r 104
‘—9— S =30, R =60,N =90, M =120,L = 150 —&— § =100, R = 200, N = 300, M = 400, L = 500
10° 102
10 10°
§ 107 ; 102
10° 10%}
107 106 F
10" L L . . 108 . . . . . .
0 100 200 300 400 500 600 0 200 400 600 800 1000 1200 1400 1600
Iter. (n) Iter. (n)
(c) (d)

FiGure 1. Iter. (n) vs Error,, experimental results of Algorithm 1
(when k = 1) for different choices of S, R, N, M, L
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TABLE 2. Numerical results of Algorithm 2 (when k = 1) for different
choices of SR, N, M, L

Dimensions Iter. (n) CPU(s)  Errory
S=3,R=6N=9M=12,L =15 35 0.000988 9.6381e-09
S—15R=30,N =45 M =60,L =75 75 0.002604 9.89550-09
S =30,R=60,N=90,M =120,L = 150 145 0.005994 9.9132e-09

S =100, R =200, N = 300, M = 400, L = 500 257 0.157988 9.8768e-09

102 . . . . 10 , , , , ,
|+5=SR=[E,V=U.’II=['I[=I—') ‘—@—5:1317:5[)1\":45.\1:(\['[:73
100+ 10%
102 102
S 107} S 107}

100 ¢ 100 ¢

108 - 108
10—10 L L L L L 10—10 L L L L L L L

0 5 10 15 20 25 30 35 0 10 20 30 40 50 60 70 80
Iter. (n) Iter. (n)
(a) (b)
10? : ‘ 10°
‘4ei 5 =30,R=060,N =90, M =120, L = 150 ‘4ei 5 =100, ® = 200, N = 300, M = 400, L = 500

10°

102

10—6 L

10—8 L

10—10 L L 10—10 L L L L L

0 50 100 150 0 50 100 150 200 250 300
Iter. (n) Iter. (n)
(c) (d)

FIGURE 2. Tter. (n) vs Error,, experimental results of Algorithm 2
(when k = 1) for different choices of S, R, N, M, L

5. CONCLUSION

In this paper, we study a multiple-sets split feasibility problem with multiple out-
put sets in infinite-dimensional Hilbert spaces. We propose relaxed inertial self-adaptive
algorithms and prove strong convergence results for the sequences generated by these
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algorithms. These algorithms generalize the algorithms developed by Kim et al. [18] and
Reich and Tuyen [19]. The important advantage of our proposed algorithms is that they
do not use the least square approximation unlike most algorithms. Finally, we validate the
performance of the proposed algorithms by using a numerical example and the numerical
results show that our proposed algorithms perform well.
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