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RELAXED DOUBLE INERTIA AND VISCOSITY ALGORITHMS 11

1. Introduction

The split feasibility problem (SFP) which was introduced by Censor and Elfving [1] is
stated as follows. Let C and Q be nonempty, closed, and convex subsets of real Hilbert
spaces H1 and H2, respectively and T : H1 → H2 be a bounded linear operator. The
split feasibility problem (SFP) is to find a point

x∗ ∈ C such that Tx∗ ∈ Q. (1.1)

The SFP provides a unified model for many inverse problems which have many real life
applications such as medical image reconstraction and signal processing (see [2, 3]). Due
to its immense potential several generalizations of the SFP have been studied by many
authors, see, for instance, the multiple-sets SFP (MSSFP) [4–6], the SFP with multiple
output sets (SFPMOS) [7–12], the split variational inequality problem (SVIP) [11, 13, 14],
the multiple-sets split variational inequality problem (MSSVIP) [15], the split variational
inequality problem with multiple output sets (SVIPMOS) [16], and the multiple-sets split
feasibility problem with multiple output sets (MSSFPMOS) [17, 18].

In 2021, Kim et al. [18], introduced the following MSSFPMOS in general Hilbert
spaces: Let Ci, i = 1, 2, . . . , s, and Qjk, j = 1, 2, . . . , p, k = 1, · · · , rj be nonempty, closed
and convex subsets of real Hilbert spaces H and Hj , respectively, and Tj : H → Hj be
bounded linear operators. The MSSFPMOS is to find an element x∗ such that

x∗ ∈ Ω :=
(
C := ∩s

i=1Ci

)
∩
(
∩p
j=1 T

−1
j

(
∩rj
k=1 Qjk

))
̸= ∅. (1.2)

In 2023, Reich and Tuyen [19, 20] developed self adaptive algorithms for solving the
split feasibility problem with multiple output sets which is a special case of the gen-
eralized Fermat-Torricelli problem and proved strong and weak convergence theorems.
The important advantage of these algorithms is that they do not use the least square
approximation unlike most algorithms.

Motivated by the above works specially that of Riech and Tuyen [19] and Kim et al.
[18], we propose inertial self-adaptive relaxed CQ-algorithms for solving the MSSFPMOS
(1.2) and prove their corresponding strong convergence.

The rest of this paper is organized as follows. We begin by stating some basic definitions
and lemmas in Section 2. We give convergence analysis of our proposed algorithms in
Section 3. We provide a numerical experiment in Section 4 to validate our proposed
algorithms.

2. Preliminaries

This section states some notations, definitions, and lemmas which are required in the
proofs of our theorems.

The weak ω-limit set of {tn} is given by

ωω(tn) =
{
t ∈ H : ∃{tnk

} ⊆ {tn} such that tnk
⇀ t

}
.

Let C be a nonempty closed convex subset of a real Hilbert space H.
A mapping S : C → C is called nonexpansive on C if

∥Su− Sv∥ ≤ ∥u− v∥, ∀u, v ∈ C.

It is well known that for every element a1 ∈ H, there exists a unique nearest point in C,
denoted by PC(a1) such that

∥a1 − PC(a1)∥ = min{∥a1 − a2∥ : a2 ∈ C}.
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12 S. Gebregiorgis, P. Kumam

The operator PC : H → C is called a metric projection of H onto C. It has got important
characterization shown below:

⟨a1 − PCa1, a2 − PCa1⟩ ≤ 0, (2.1)

for all a1 ∈ H and a2 ∈ C. We can deduce from (2.1) that the operator PC is a nonex-
pansive mapping.

Lemma 2.1. (see [21]) For all a1, a2 ∈ H, the following inequalities hold.

(1) ∥PC(a1)− PC(a2)∥2 ≤ ⟨PC(a1)− PC(a2), a− b⟩;
(2) ⟨a1 − a2, (I − PC)a1 − (I − PC)a2⟩ ≥ ∥(I − PC)a1 − (I − PC)a2∥2.

Definition 2.2. (see [21]) A g : H → (−∞,+∞] be a given function. Then g is σ-strongly
convex if

g(δa1 + (1− δ)a2) +
σ

2
δ(1− δ)∥a1 − a2∥2 ≤ δg(a1) + (1− δ)g(a2),

for all δ ∈ (0, 1) and for all a1, a2 ∈ H where σ > 0.

Lemma 2.3. (see [21]) Let g : H → (−∞,+∞] be a ϱ-strongly convex function. Then

g(b) ≥ g(a) + ⟨ξ, b− a⟩+ ϱ

2
∥b− a∥2, ξ ∈ ∂g(a),

for all a, b ∈ H.

Lemma 2.4. (see [22, 23]) Let {sn} and {γn} be sequences of nonnegative real numbers,
such that

sn+1 ≤ (1− σn)sn + εn + γn, n ≥ 1,

where {σn} ⊂ (0, 1) and {εn} is a real sequence. Assume that
∑∞

n=1 γn < ∞. Then the
following results hold:

(1) If εn ≤ σnM for some M ≥ 0, then {sn} is a bounded sequence;
(2) If

∑∞
n=1 σn = ∞ and lim sup

n→∞

εn
σn

≤ 0, then sn → 0 as n → ∞.

Lemma 2.5. (see [24]) Let {sn} be a non-negative real sequence, such that

sn+1 ≤ (1− σn)sn + σnµn, n ≥ 1,
sn+1 ≤ sn − ϕn + φn, n ≥ 1,

where {σn} ⊂ (0, 1), {ϕn} ⊂ [0,∞), and {µn}, {φn} ⊂ (−∞,∞). In addition, suppose
the following conditions hold.

(1)
∑∞

n=1 σn = ∞;
(2) lim

n→∞
φn = 0;

(3) lim
k→∞

ϕnk
= 0 implies lim sup

k→∞
µnk

≤ 0 for every subsequence {nk} of {n}.

Then, lim
n→∞

sn = 0.

Lemma 2.6. [25] Let {sk} ⊂ (0,∞), {tk} ⊂ (−∞,∞), and {uk} ⊂ (0, 1) satisfying∑∞
n=1 uk = ∞, and sk+1 ≤ (1−uk)sk+uktk, ∀k ≥ 1. If lim supi→∞ tki

≤ 0 and for every
subsequence {ski} of {sk}, lim infi→∞(ski+1 − ski) ≥ 0, then limk→∞ sk = 0.
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RELAXED DOUBLE INERTIA AND VISCOSITY ALGORITHMS 13

3. Main Results

In this section, we state our algorithms and analyze their convergence. For simplicity
let J1 := {1, 2, . . . , s}, J2 := {1, 2, . . . , p}, and J3 := {1, 2, . . . , rj}.

We take the following assumptions to undergo the analysis.

(C1) The nonempty level sets C and Q in the MSSFPMOS (1.2) are defined as follows

Ci = {x ∈ H : ci(x) ≤ 0} and Qjk = {y ∈ Hj : qjk(y) ≤ 0}, (3.1)

where ci : H → (−∞,+∞] for all i ∈ J1 and qjk : Hj → (−∞,+∞] for all
j ∈ J2, k ∈ J3 are ϖi-strongly and ωj-strongly convex subdifferentiable function,
respectively. Then ci and qjk are also lower semicontinuous (See, [21] Theorem
9.1)

(C2) Let ci and qjk defined in (3.1), respectively. Assume that at least one subgradient
ξi ∈ ∂ci(x) and µjk ∈ ∂qjk(y) can be computed for any x ∈ H and y ∈ Hj .
Moreover, both ∂ci(i ∈ J1) and ∂qjk(j ∈ J2, k ∈ J3) are bounded operators
(bounded on bounded sets). The sets Cn

i (i ∈ J1) and Qn
jk (j ∈ J2, k ∈ J3) are

constructed as follows:

Cn
i =

{
x ∈ H : ci(xn) + ⟨ξni , x− xn⟩+

ϖi

2
∥x− xn∥2 ≤ 0

}
, (3.2)

where ξni ∈ ∂ci(xn) and

Qn
jk =

{
y ∈ Hj : qjk(Tjxn) + ⟨ηnjk, y − Tjxn⟩+

ωj

2
∥y − Tjxn∥2 ≤ 0

}
, (3.3)

where ηnjk ∈ ∂qjk(Tjxn).

Now, we introduce our proposed algorithms for solving the MSSFPMOS (1.2).

Algorithm 1 A strongly convergent method with double inertial steps for solving the
MSSFPMOS (1.2)

Step 0. Choose the sequences {σn} ⊂ [0, 1), {ρn} ⊂ (0, 2), and {θn} ⊂ [0, 1). Take the
weights αn

i (i ∈ J1) > 0 and the constant parameters βjk (j ∈ J2, k ∈ J3) > 0 such that
s∑

i=1

αn
i = 1 and inf

i∈In
αn
i > α > 0, where In = {i ∈ J1 : αn

i > 0}. (3.4)

Select initial points t0, t1 ∈ C. Assume that tn has been constructed.

Step 1. For tn−1 and tn , choose θ ∈ (0, 1) such that 0 ≤ θn ≤ θ̂n where

θ̃n =

min

{
θ,

ϵn
||tn − tn−1||

}
if tn ̸= tn−1,

θ otherwise,
(3.5)

where ϵn ⊂ (0,∞) such that lim
n→∞

ϵn
σn

= 0.

Step 2. Compute

wn = tn + θn(tn − tn−1). (3.6)

Step 3. Compute

vn = (1− σn)wn. (3.7)
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14 S. Gebregiorgis, P. Kumam

Step 4. Compute

dnjk =


(
IHj − P

Hj

Qn
jk

)
Tjvn∥∥∥(IHj − P

Hj

Qn
jk

)
Tjvn

∥∥∥ if Tjvn /∈ Qn
jk,

0 if Tjvn ∈ Qn
jk,

(3.8)

for all j ∈ J2 and k ∈ J3.
Step 5. If

∑p
j=1

∑rj
k=1 βjkT

∗
j d

n
jk = 0, then stop. If not, compute tn+1 via

tn+1 =

s∑
i=1

αn
i PCn

i

(
vn − τn

p∑
j=1

rj∑
k=1

βjkT
∗
j d

n
jk

)
, (3.9)

where Cn
i and Qn

jk are defined as in (3.2) and (3.3), respectively and

τn :=
ρn
∑p

j=1

∑rj
k=1 βjkfjk(Tjvn)∥∥∥∑p

j=1

∑rj
k=1 βjkT ∗

j d
n
jk

∥∥∥2 , (3.10)

where fjk(v) =
∥∥∥(IHj − P

Hj

Qn
jk

)
(v)
∥∥∥ for all v ∈ Hj and for all j ∈ J2, k ∈ J3.

Step 6. Set n := n+ 1 and return to Step 1.

Proposition 3.1. In Algorithm 1, if
∑p

j=1

∑rj
k=1 βjkT

∗
j d

n
jk = 0, then vn is a solution to

the MSSFPMOS (1.2).

Proof. For each n, let ∆n = {(j, k) : dnjk ̸= 0}.
Following the same line of proof as in Proposition 6 of [26], we get

∥∥∥(IHj − P
Hj

Qn
jk

)
Tjvn

∥∥∥ =

0 for all (j, k) ∈ ∆n which in turn implies that Tjvn ∈ Qn
jk for all (j, k) ∈ ∆n. If (j, k) /∈

∆n, then dnjk = 0 which in turn implies that Tjvn ∈ Qn
jk. Consequently, Tjvn ∈ Qn

jk for
all j ∈ J2 and k ∈ J3. Now, since vn ∈ Cn

i and Tjvn ∈ Qn
jk for all j ∈ J2, k ∈ J3, we

conclude that vn is a solution to the MSSFPMOS (1.2).

Next, we analyze the convergence of Algorithm 1.

Theorem 3.2. Let Ω ̸= ∅. Then the sequence {tn} generated by Algorithm 1 converges
strongly to a point t∗ = PΩ0 under the following conditions.

(A1) {σn} ⊂ [0, 1) such that lim
k→∞

σn = 0 and
∞∑
k=0

σn = ∞.

(A2) {ρn} ⊂ (0,∞) such that 0 < ρ ≤ infn ρn ≤ supn ρn ≤ ρ < 2.

Proof. Let t∗ ∈ Ω, then we have∥∥∥∥∥∥vn − τn

p∑
j=1

rj∑
k=1

βjkT
∗
j d

n
jk − t∗

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥(vn − t∗)− τn

p∑
j=1

rj∑
k=1

βjkT
∗
j d

n
jk

∥∥∥∥∥∥
2
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RELAXED DOUBLE INERTIA AND VISCOSITY ALGORITHMS 15

= ∥vn − t∗∥2 + τ2n

∥∥∥∥∥∥
p∑

j=1

rj∑
k=1

βjkT
∗
j d

n
jk

∥∥∥∥∥∥
2

− 2τn

⟨
p∑

j=1

rj∑
k=1

βjkT
∗
j d

n
jk, vn − t∗

⟩

= ∥vn − t∗∥2 + τ2n

∥∥∥∥∥∥
p∑

j=1

rj∑
k=1

βjkT
∗
j d

n
jk

∥∥∥∥∥∥
2

− 2τn
∑

(j,k)∈∆n

βjk

⟨
T ∗
j d

n
jk, vn − t∗

⟩

= ∥vn − t∗∥2 + τ2n

∥∥∥∥∥∥
p∑

j=1

rj∑
k=1

βjkT
∗
j d

n
jk

∥∥∥∥∥∥
2

− 2τn
∑

(j,k)∈∆n

βjk

⟨
dnjk, Tjvn − Tjt

∗⟩

= ∥vn − t∗∥2 + τ2n

∥∥∥∥∥∥
p∑

j=1

rj∑
k=1

βjkT
∗
j d

n
jk

∥∥∥∥∥∥
2

−2τn
∑

(j,k)∈∆n

βjk

⟨ (
IHj − P

Hj

Qn
jk

)
Tjvn∥∥∥(IHj − P

Hj

Qn
jk

)
Tjvn

∥∥∥ , Tjvn − Tjt
∗

⟩

= ∥vn − t∗∥2 + τ2n

∥∥∥∥∥∥
p∑

j=1

rj∑
k=1

βjkT
∗
j d

n
jk

∥∥∥∥∥∥
2

−2τn
∑

(j,k)∈∆n

βjk

⟨(
IHj − P

Hj

Qn
jk

)
Tjvn −

(
IHj − P

Hj

Qn
jk

)
Tjt

∗∥∥∥(IHj − P
Hj

Qn
jk

)
Tjvn

∥∥∥ , Tjvn − Tjt
∗

⟩

≤ ∥vn − t∗∥2 + τ2n

∥∥∥∥∥∥
p∑

j=1

rj∑
k=1

βjkT
∗
j d

n
jk

∥∥∥∥∥∥
2

− 2τn
∑

(j,k)∈∆n

βjk

∥∥∥(IHj − P
Hj

Qn
jk

)
Tjvn

∥∥∥ .
(3.11)

Substituting (3.10) into (3.11) and simplifying, we get∥∥∥∥∥∥vn − τn

p∑
j=1

rj∑
k=1

βjkT
∗
j d

n
jk − t∗

∥∥∥∥∥∥
2

≤ ∥vn − t∗∥2 − ρn(2− ρn)gjk(vn) (3.12)

≤ ∥vn − t∗∥2, (3.13)

where gjk(vn) =

∑(j,k)∈∆n
βjkfjk(Tjvn)∥∥∥∑(j,k)∈∆n
βjkT ∗

j d
n
jk)
∥∥∥
2

.

By Lemma 2.1 (2), (3.9), and (3.13), we also obtain
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∥tn+1 − t∗∥ =
∥∥∥ s∑

i=1

αn
i PCn

i

(
vn − τn

p∑
j=1

rj∑
k=1

βjkT
∗
j d

n
jk

)
− t∗

∥∥∥
=

∥∥∥ s∑
i=1

αn
i PCn

i

(
vn − τn

p∑
j=1

rj∑
k=1

βjkT
∗
j d

n
jk

)
−

s∑
i=1

αn
i PCn

i
t∗
∥∥∥

≤
∥∥∥vn − τn

p∑
j=1

rj∑
k=1

βjkT
∗
j d

n
jk − t∗

∥∥∥ (3.14)

≤ ∥vn − t∗∥. (3.15)

Using (3.6), we have

∥wn − t∗∥ = ∥tn + θn(tn − tn−1)− t∗∥
≤ ∥tn − t∗∥+ θn∥tn − tn−1∥

= ∥tn − t∗∥+ σn

[
θn
σn

∥tn − tn−1∥
]
. (3.16)

Using (3.7) and (3.16), we also obtain the following estimation

∥vn − t∗∥ = ∥(1− σn)(wn − t∗)− σnt
∗∥

≤ (1− σn)∥wn − t∗∥+ σn∥t∗∥
≤ (1− σn) [∥tn − t∗∥+ θn∥tn − tn−1∥] + σn∥t∗∥
= (1− σn)∥tn − t∗∥+ (1− σn)θn∥tn − tn−1∥+ σn∥t∗∥

≤ (1− σn)∥tn − t∗∥+ σn

[ θn
σn

∥tn − tn−1∥+ ∥t∗∥
]
. (3.17)

Therefore, we have from (3.15) and (3.17) that

∥tn+1 − t∗∥ ≤ (1− σn)∥tn − t∗∥+ σn

[
θn
σn

∥tn − tn−1∥+ ∥t∗∥
]
. (3.18)

Since limn→∞
θn
σn

∥tn − tn−1∥ = 0 , the sequence
{

θn
σn

∥tn − tn−1∥
}

is bounded. Now,

setting

Mmax = max

{
sup
n∈N

{
θn
σn

∥tn − tn−1∥
}
, ∥t∗∥

}
. (3.19)

We can see that all the conditions of Lemma 2.4 are satisfied and hence the sequence {∥tn−
t∗∥} is bounded. This in turn implies that the sequence {tn} is bounded. Consequently,
{wn}, {vn}, and {Tjvn} (for each j ∈ J2) are also bounded.
Using (3.6), we have

∥wn − t∗∥2 = ∥tn + θn(tn − tn−1)− t∗∥2

= ∥(tn − t∗) + θn(tn − tn−1)∥2

≤ ∥tn − t∗∥2 + θ2n∥(tn − tn−1)∥2 + 2θn⟨tn − t∗, tn − tn−1⟩

≤ ∥tn − t∗∥2 + σn

[
θ2n
σ2
n

∥tn − tn−1∥2 + 2
θn
σn

∥tn − t∗∥∥tn − tn−1∥
]
.
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Using (3.7) and (3.20), we have

∥vn − t∗∥2 = ∥(1− σn)wn − t∗∥2

= ∥(1− σn)(wn − t∗)− σnt
∗∥2

≤ (1− σn)
2∥wn − t∗∥2 + 2σn⟨vn − t∗,−t∗⟩

≤ (1− σn)∥tn − t∗∥2 + σn

[
θ2n
σ2
n

∥tn − tn−1∥2 + 2
θn
σn

∥tn − t∗∥∥tn − tn−1∥

+2∥vn − tn+1∥∥t∗∥
]
+ 2σn⟨tn+1 − t∗,−t∗⟩. (3.20)

Using (3.13), (3.14), and (3.20), we also obtain

∥tn+1 − t∗∥2 ≤
∥∥∥vn − τn

p∑
j=1

rj∑
k=1

βjkT
∗
j d

n
jk − t∗

∥∥∥2
≤ ∥vn − t∗∥2 − ρn(1− ρn)gjk(vn)

≤ (1− σn)∥tn − t∗∥2 + σn

[(
θn
αn

∥tn − tn−1∥
)2

+2
θn
σn

∥tn − tn−1∥∥tn − t∗∥+ 2∥vn − tn+1∥∥t∗∥+ 2⟨−t∗, tn+1 − t∗⟩
]

−ρn(2− ρn)gjk(vn). (3.21)

Now, letting

sn = ∥tn − t∗∥2,

ϕn =

(
θn
σn

∥tn − tn−1∥
)2

+ 2
θn
σn

∥tn − tn−1∥∥tn − t∗∥

+2∥vn − tn+1∥∥t∗∥+ 2⟨−t∗, tn+1 − t∗⟩,
φn = σnϕn, and

µn = ρn(2− ρn)gjk(vn).

Now, (3.21) reduces to

sn+1 ≤ (1− σn)sn + σnϕn and sn+1 ≤ (1− σn)sn − µn + φn. (3.22)

Assume, liml→∞ µnl
= 0. It follows that

lim
l→∞

∑
(j,k)∈∆nl

βjkfjk(Tjvnl
)∥∥∥∑(j,k)∈∆nl

βjkT ∗
j d

nl

jk)
∥∥∥ = 0, (3.23)

for all (j, k) ∈ ∆nl
. By using ∥dnl

jk∥ = 1 for all j ∈ J2 and k ∈ J3, we get

0 ≤

∑
(j,k)∈∆nl

βjkfjk(Tjvnl
)∑

(j,k)∈∆nl
βjk∥T ∗

j ∥
≤

∑
(j,k)∈∆nl

βjkfjk(Tjvnl
)∥∥∥∑(j,k)∈∆nl

βjkT ∗
j d

nl

jk)
∥∥∥ .

It follows from (3.24) that,
∑

(j,k)∈∆nl
βjkfjk(Tjvnl

) = 0, or equivalently

lim
l→∞

∥(IHj − P
Hj

Q
nl
jk

)Tjvnl
∥ = 0,
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for all (j, k) ∈ ∆nl
.

From the definition of ∆nl
and dnl

jk, we have Tjvnl
∈ Qnl

jk when (j, k) /∈ ∆nl
and hence

∥(IHj − P
Hj

Q
nl
jk

)Tjvnl
∥ = 0. As a result, we get

lim
l→∞

∥(IHj − P
Hj

Q
nl
jk

)Tjvnl
∥ = 0, (3.24)

for all j ∈ J2 and k ∈ J3.
Using (3.7), we get

∥vn − tn∥ =
∥∥(1− σn)wn − tn

∥∥
=

∥∥(1− σn)θn(tn − tn−1)− σntn
∥∥

≤ (1− σn)θn∥tn − tn−1∥+ σn∥tn∥

= σn

[
(1− σn)

θn
σn

∥tn − tn−1∥+ ∥tn∥
]
. (3.25)

By Lemma 2.1 (2) and (3.9), we obtain

∥tnl+1 − vnl
∥ =

∥∥∥ s∑
i=1

αnl
i PC

nl
i

(
vnl

− τnl

p∑
j=1

rj∑
k=1

βjkT
∗
j d

nl

jk

)
−

s∑
i=1

αnl
i PC

nl
i
vnl

∥∥∥
≤ τnl

∥∥∥∥∥∥
p∑

j=1

rj∑
k=1

βjkT
∗
j d

nl

jk

∥∥∥∥∥∥
= ρnl

gjk(vnl
)

≤ ρ̄gjk(vnl
) → 0 as l → ∞, (3.26)

which implies that

lim
l→∞

∥tnl+1 − vnl
∥ = 0. (3.27)

Moreover, since

∥tnl+1 − tnl
∥ ≤ ∥tnl+1 − vnl

∥+ ∥vnl
− tnl

∥,

we obtain that

lim
l→∞

∥tnl+1 − tnl
∥ = 0. (3.28)

Next, we need to show that ωw(tn) ⊂ Ω. Since {tn} is bounded, ωw(tn) ̸= ∅. Let
t̄ ∈ ωw(tn). It follows that there exists a subsequence {tnl

} of {tn} such that tnl
⇀ t̄.

Since ∥vn − tn∥ → 0, we have vnl
⇀ t̄. Now, due to the linearity and boundedness of Tj ,

we have Tjvnl
⇀ Tj t̄.

We claim that t̄ ∈ Ω. To show this it is suffices to show that t̄ ∈ Cn
i for all i ∈ J1 and

Tj(t̄) ∈ Qn
jk for all j ∈ J2, k ∈ J3.

From the assumption (C2), we can see that ∂qjk is bounded on bounded set for each
j ∈ J2, k ∈ J3. It follows that we can find a constant η > 0 such that ∥ηnl

jk∥ ≤ η, where

ηnl

jk ∈ ∂qjk(Tjvnl
) for each j ∈ J2, k ∈ J3.
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Now, using (3.3), (3.24), and the fact that Pnl

Qjk

(
Tjvnl

)
∈ Qnl

jk, we get

qjk

(
Tjvnl

)
≤

⟨
ηnl

jk, Tjvnl
− PQ

nl
jk

(
Tjvnl

)⟩
− ωj

2

∥∥∥Tjvnl
− PQ

nl
jk

(
Tjvnl

)∥∥∥2
≤

⟨
ηnl

jk, Tjvnl
− PQ

nl
jk

(
Tjvnl

)⟩
≤

∥∥∥ηnl

jk

∥∥∥∥∥∥(I − PQ
nl
jk

)
Tjvnl

∥∥∥
≤ η

∥∥∥(I − PQ
nl
jk

)
Tjvnl

∥∥∥→ 0. (3.29)

Noting qjk is weakly lower semi-continuous, it follows that

qjk(Tj t̄) ≤ lim inf
l→∞

qjk

(
Tjvnl

)
≤ lim

l→∞
η
∥∥∥(I − PQ

nl
jk

)
Tjvnl

∥∥∥ = 0,

for all j ∈ J2, k ∈ J3. It turns out that, Tj t̄ ∈ Qjk for all j ∈ J2, k ∈ J3.
Again, from the assumption (C2), we can see that ∂ci is bounded on bounded set

for each i ∈ J1. It follows that there is a constant ξ > 0 such that ∥ξnl
i ∥ ≤ ξ, where

ξnl
i ∈ ∂ci(vnl

). That is the sequence {ξnl
i } is bounded.

By using (3.2) and (3.27), we have as l → ∞ that

ci(vnl
) ≤

⟨
ξnl
i , vnl

− tnl+1

⟩
− ϖi

2

∥∥∥vnl
− tnl+1

∥∥∥2
≤

∥∥∥ξnl
i

∥∥∥∥∥∥vnl
− tnl+1

∥∥∥
≤ ξ

∥∥∥vnl
− tnl+1

∥∥∥→ 0. (3.30)

Noting ci is weakly lower semi-continuous, it follows that

ci(t̄) ≤ lim inf
l→∞

ci(vnl
) ≤ lim

l→∞
ξ
∥∥∥vnl

− tnl+1

∥∥∥ = 0,

for all i ∈ J1. Thus, t̄ ∈ Cn
i , i.e., ωω(tn) ⊆ Ω for each i ∈ J1.

For t∗ = PΩ0 and tnl
⇀ t̄ ∈ Ω, it follows from (2.1) that ⟨−t∗, t̄− t∗⟩ ≤ 0. So,

lim sup
n→∞

⟨−t∗, tn − t∗⟩ = lim sup
l→∞

⟨−t∗, tnl
− t∗⟩ = ⟨−t∗, t̄− t∗⟩ ≤ 0. (3.31)

It follows from (3.28) and (3.31), that

lim sup
n→∞

⟨−t∗, tn+1 − t∗⟩ = lim sup
n→∞

(⟨−t∗, tn+1 − tn⟩+ ⟨−t∗, tn − t∗⟩) ≤ 0, (3.32)

and hence

lim sup
l→∞

ϕnl
= lim sup

l→∞

[(
θnl

σnl

∥tnl
− tnl−1∥

)2

+ 2
θnl

σnl

∥tnl
− tnl−1∥∥tnl

− t∗∥

+ 2∥vn − tn+1∥∥t∗∥+ ⟨−t∗, tnl+1 − t∗⟩
]
≤ 0.

Now, applying Lemma 2.5 to (3.21), we have that lim
n→∞

∥tn− t∗∥ = 0. This completes the

proof of Theorem 3.2.

Our second proposed algorithm is given below.
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Algorithm 2 A strongly convergent viscosity type method for solving the MSSFPMOS
(1.2)

Step 0. Choose the sequences {σn} ⊂ [0, 1), {ρn} ⊂ (0, 2), and {θn} ⊂ [0, 1). Take the
weights αn

i (i ∈ J1) > 0 and the constant parameters βjk (j ∈ J2, k ∈ J3) > 0 such that
s∑

i=1

αn
i = 1 and inf

i∈In
αn
i > α > 0, where In = {i ∈ J1 : αn

i > 0}. (3.33)

Select initial points t0, t1 ∈ C. Assume that tn has been constructed.

Step 1. For tn−1 and tn , choose θ ∈ (0, 1) such that 0 ≤ θn ≤ θ̂n where

θ̃n =

min

{
θ,

ϵn
||tn − tn−1||

}
if tn ̸= tn−1,

θ otherwise,
(3.34)

where ϵn ⊂ (0,∞) such that lim
n→∞

ϵn
σn

= 0.

Step 2. Given the iterates tn−1, tn ∈ H, then compute

wn = tn + θn(tn − tn−1). (3.35)

Step 3. Compute

dnjk =


(
IHj − P

Hj

Qn
jk

)
Tjwn∥∥∥(IHj − P

Hj

Qn
jk

)
Tjwn

∥∥∥ if Tjwn /∈ Qn
jk,

0 if Tjwn ∈ Qn
jk,

(3.36)

for all j ∈ J2 and k ∈ J3.
Step 4. If

∑p
j=1

∑rj
k=1 βjkT

∗
j v

n
jk = 0, then stop. If not, compute zn via

zn =

s∑
i=1

αn
i PCn

i

(
wn − τn

p∑
j=1

rj∑
k=1

βjkT
∗
j d

n
jk

)
, (3.37)

where Cn
i and Qn

jk are defined as in (3.2) and (3.3), respectively and

τn :=
ρn
∑p

j=1

∑rj
k=1 βjkfjk(Tjwn)∥∥∥∑p

j=1

∑rj
k=1 βjkT ∗

j d
n
jk

∥∥∥ , (3.38)

where fjk(w) =
∥∥∥(IHj − P

Hj

Qn
jk

)
(w)
∥∥∥ for all w ∈ Hj , and for all j ∈ J2, k ∈ J3.

Step 5.

tn+1 = σnv(tn) + (1− σn)zn, (3.39)

where v : H → C is a λ-contraction mapping where λ ∈ [0, 1).
Step 6. Set n := n+ 1 and return to Step 1.

Theorem 3.3. Assume that Ω ̸= ∅. Then the sequence {tn} generated by Algorithm 2
converges strongly to a point t∗ = PΩv(t

∗) under the assumption (A1) and (A2).
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Proof. Following the same steps as in getting inequalities (3.11) to (3.15), we get

∥zn − t∗∥ =
∥∥∥ s∑

i=1

αn
i PCn

i

(
wn − τn

p∑
j=1

rj∑
k=1

βjkT
∗
j d

n
jk

)
− t∗

∥∥∥
≤ ∥wn − t∗∥. (3.40)

By using (3.39) and (3.40), we have

∥tn+1 − t∗∥ = ∥σn(v(tn)− t∗) + (1− σn)(zn − t∗)∥
= σn∥v(tn)− t∗∥+ (1− σn)∥zn − t∗∥
≤ σn∥v(tn)− v(t∗)∥+ σn∥v(t∗)− t∗∥+ (1− αn)∥zn − t∗∥
≤ λσn∥tn − t∗∥+ σn∥v(t∗)− t∗∥+ (1− σn)∥zn − t∗∥
≤ σn∥v(tn)− v(t∗)∥+ σn∥v(t∗)− t∗∥+ (1− αn)∥zn − t∗∥
≤ λσn∥tn − t∗∥+ σn∥v(t∗)− t∗∥+ (1− σn)∥wn − t∗∥.

(3.41)

Using (3.16) and (3.41), we have

∥tn+1−t∗∥ ≤ [1−(1−λ)σn]∥tn−t∗∥+σn

[
θn
σn

∥tn−tn−1∥+∥v(t∗)−t∗∥
]
. (3.42)

By the condition of σn, we have limn→∞
θn
σn

∥tn − tn−1∥ = 0. Hence, we can find a
constant M ≥ 0 such that

θn
σn

∥tn − tn−1∥ ≤ M.

Now, (3.42) becomes

∥tn+1 − t∗∥ ≤ [1− (1− η)σn]∥tn − t∗∥+ σn

[
M + ∥v(t)− t∗∥

]
= [1− (1− η)σn]∥tn − t∗∥+ σn(1− η)

[
M + ∥v(t)− t∗∥

1− η

]
.

Proceeding inductively, we arrive at

∥tn+1 − t∗∥ ≤ max

{
∥t1 − t∗∥, M + ∥v(t∗)− t∗∥

1− η

}
,

for all n ≥ 1 which proves that {tn} is bounded.
Again, using (3.39), we have

∥tn+1 − t∗∥2 = ∥σn(v(tn)− t∗) + (1− σn)(zn − t∗)∥2

= ∥σn(v(tn)− v(t∗) + v(t∗)− t∗) + (1− σn)(zn − t∗)∥2

= ∥[σn(v(tn)− v(t∗)) + (1− σn)(zn − t∗)] + σn(v(t
∗)− t∗)∥2

≤ ||σn(v(tn)− v(t∗)) + (1− σn)(zn − t∗)||2+
+ 2σn⟨v(t∗)− t∗, tn+1 − t∗⟩

≤ σn||v(tn)− v(t∗)||2 + (1− σn)||zn − t∗||2

+ 2σn⟨v(t∗)− t∗, tn+1 − t∗⟩
≤ λσn||tn − t∗||2 + (1− σn)||zn − t∗||2

+ 2σn⟨v(t∗)− t∗, tn+1 − t∗⟩.
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(3.43)

Using the inequality(3.15) (after replacing tn+1 for zn and wn for vn), (3.20), and (3.43),
we get

∥tn+1 − t∗∥2 ≤ [1− (1− λ)σn]∥tn − t∗∥2

+ σn

[(
θn
σn

∥tn − tn−1∥
)2

+ 2

(
θn
σn

∥tn − tn−1∥
)
∥tn − t∗∥

]
− ρn(1− ρn)gjk(vn) + 2σn⟨v(t∗)− t∗, tn+1 − t∗⟩.

(3.44)

It follows that

ρn(1− ρn)gjk(vn) ≤ ∥tn − t∗∥2 − ∥tn+1 − t∗∥2 + σnN, (3.45)

where

N = supn≥1

{(
θn
σn

∥tn−tn−1∥
)2

+2∥tn−t∗∥
(
θn
σn

∥tn−tn−1∥
)
+2⟨v(t∗)−t∗, tn+1−t∗⟩

}
.

Let qn := ∥tn − t∗∥2 and

γn :=

(
θn
σn

∥tn − tn−1∥
)2

+ 2∥tn − t∗∥
(
θn
σn

∥tn − tn−1∥
)
+ 2⟨v(t∗)− t∗, tn+1 − t∗⟩.

Then (3.44) becomes

qn+1 ≤
[
1− (1− λ)σn

]
qn + σnγn. (3.46)

Our next task is to show the strong convergence of the sequence {tn} to t∗.
With out loss of generality, we can assume that qn has a subsequence {qnl

} such that

lim inf
l→∞

(qnl+1 − qnl
) ≥ 0. (3.47)

Passing limit supremum on both sides of (3.45) and using conditions (A1) and (A2), we
get

lim sup
l→∞

gjk(vnl
) ≤ 1

ρ(2− ρ)

(
lim sup
l→∞

(qnl
− qnl+1) +N lim sup

i→∞
σnl

)
= − lim inf

l→∞
(qnl+1 − qnl

) +N lim sup
i→∞

σnl

≤ 0.

It follows that

lim
l→∞

∑
(j,k)∈∆nl

βjkfjk(Tjwnl
)∥∥∥∑(j,k)∈∆nl

βjkT ∗
j d

nl

jk)
∥∥∥ = 0, (3.48)

By an argument similar to the one used in the proof of Theorem 3.2, we obtain

lim
l→∞

∥(IHj − P
Hj

Q
nl
jk

)Tjwnl
∥ = 0, (3.49)

for all j ∈ J2 and k ∈ J3.

Next, we show that ωw(tn) ⊂ Ω. Since {tn} is bounded, ωw(tn) ̸= ∅. Let t̄ ∈ ωw(tn),
then we may assume that there exists a subsequence {tnl

} of {tn} such that tnl
⇀ t̄.
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Furthermore, ∥zn − tn∥ → 0, and hence znl
⇀ t̄, and since Tj is linear and bounded,

Tjznl
⇀ Tj t̄.

By the Banach contraction principle, there exists a unique point t∗ = PΩv(t
∗). It then

follows from (2.1) that

⟨v(t∗)− t∗, z − t∗⟩ ≤ 0, (3.50)

for all z ∈ Ω. Next, we prove that lim supl→∞ γnl
≤ 0. Indeed, let tnlm

such that

lim sup
l→∞

⟨v(t∗)− t∗, tnl
− t∗⟩ = lim

m→∞
⟨v(t∗)− t∗, tnlm

− t∗⟩. (3.51)

Again, by an argument similar to the one used in the proof of Theorem 3.2, we can
prove that t̄ is a solution of the MSSFPMOS (1.2). Thus, by using (3.50) and (3.51), we
get

⟨v(t∗)− t∗, t̄− t∗⟩ ≤ 0. (3.52)

In order to prove that lim supl→∞ γnl
≤ 0, we need to show that liml→∞ ∥tnl+1−tnl

∥ = 0.
Now, taking in to account the boundedness of {zn} and using (3.39), we obtain

∥tn+1 − zn∥ = σn∥v(tn)− zn∥
≤ σn(∥v(tn)∥+ ∥zn∥)
≤ σn(∥v(tn)− t∗ + t∗∥+ ∥zn∥)
≤ σn(∥v(tn)− t∗∥+ ∥t∗∥+ ∥zn∥)
≤ σn(N1 +N2 + ∥t∗∥) → 0,

(3.53)

where N1 = supn{∥v(tn)− t∗∥} and N2 = supn{∥yn∥} < ∞.
Using the definitions of zn and τn, we obtain

∥zn − tn∥ =
∥∥∥ s∑

i=1

αn
i PCn

i

(
wn − τn

p∑
j=1

rj∑
k=1

βjkT
∗
j d

n
jk

)
− tn

∥∥∥
=

∥∥∥ s∑
i=1

αn
i PCn

i

(
wn − τn

p∑
j=1

rj∑
k=1

βjkT
∗
j d

n
jk

)
−

s∑
i=1

αn
i PCn

i
tn

∥∥∥
≤

∥∥∥wn − τn

p∑
j=1

rj∑
k=1

βjkT
∗
j d

n
jk − tn

∥∥∥
≤ ∥wn − tn∥+ τn

∥∥∥ p∑
j=1

rj∑
k=1

βjkT
∗
j d

n
jk

∥∥∥
≤ θn

σn
∥tn − tn−1∥+ ρn

∑
(j,k)∈∆n

βjkfjk(Tjwn)∥∥∥∑(j,k)∈∆n
βjkT ∗

j d
n
jk)
∥∥∥ . (3.54)

Using (3.34), (3.48), and (3.54), it follows that

lim
l→∞

∥zn − tn∥ = 0. (3.55)

Now, combining (3.53) and (3.55), we get

∥tnl+1 − tnl
∥ ≤ ∥tnl+1 − znl

∥+ ∥znl
− tnl

∥ → 0 as l → ∞,
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that is

lim
l→∞

∥tnl+1 − tnl
∥ = 0. (3.56)

It follows from (3.52) and (3.56), that

lim sup
n→∞

⟨v(t∗)− t∗, tn+1 − t∗⟩

= lim sup
n→∞

(
⟨v(t∗)− t∗, tn+1 − tn + ⟨v(t∗)− t∗, tn − t∗⟩

)
≤ 0, (3.57)

and hence

lim sup
l→∞

γnl

= lim sup
l→∞

[(
θnl

σnl

∥tnl
− tnl−1∥

)2

+ 2
θnl

σnl

∥tnl
− tnl−1∥∥tnl

− t∗∥+ ⟨v(t∗)− t∗, tnl+1 − t∗⟩
]

≤ 0.

Hence, all the assumptions of Lemma 2.6 are satisfied. Therefore, we conclude that
tn → t∗. This completes the proof of Theorem 3.3.

4. Numerical Experiment

In this section, we show the validity of a special case of Algorithm 1 and Algorithm 2
(when k = 1).

Example 4.1. Let H = RS , H1 = RR, H2 = RN , H3 = RM , H4 = RL.
Let C1 = {x ∈ RS : ∥x− o1∥2 ≤ r21}, C2 = {x ∈ RS : ∥x− o2∥2 ≤ r22}, C3 = {x ∈ RS :

∥x − o3∥2 ≤ r23}, and C4 = {x ∈ RS : ∥x − o4∥2 ≤ r24} where o1, o2, o3, o4 ∈ RS and
r1, r2, r3, r4 ∈ R. Clearly C1, C2, C3, and C4 are nonempty closed and convex subsets of
H.

Let Q1 = {T1x ∈ RR : ∥T1x− c1∥2 ≤ ϱ21}, Q2 = {T2x ∈ RN : ∥T2x− c2∥2 ≤ ϱ22}, Q3 =
{T3x ∈ RM : ∥T3x−c3∥2 ≤ ϱ23}, and Q4 = {T4x ∈ RL : ∥T4x−c4∥2 ≤ ϱ24} where c1 ∈ RR,
c2 ∈ RN , c3 ∈ RM , c4 ∈ RL and ϱ1, ϱ2, ϱ3, ϱ4 ∈ R.

Let T1 : RS → RR, T2 : RS → RN , T3 : RS → RM , T4 : RS → RL where their entries
are randomly generated in the closed interval [−5, 5].

Now, we construct the balls Cn
i (i = 1, 2, 3, 4) and Qn

j (j = 1, 2, 3, 4) given in (3.2) and
(3.3) of the sets Ci and Qj , respectively, as follows.

For any x ∈ RS , we have ci(x) = ∥x − oi∥2 − r2i for i = 1, 2, 3, 4 and qj(Tjx) =
∥Tjx−cj∥2−ϱ2j for j = 1, 2, 3, 4. In what follows the subgradients ξni and ηnj of respectively
ci(yn) and qj(Tjyn) can be calculated respectively at the points yn and Tjyn by ξni (yn) =
2(yn − oi) and ηnj (Tjyn) = 2T ∗

j (Tjyn − cj). The metric projections onto the balls Cn
i

(i = 1, 2, 3, 4) and Qn
j (j = 1, 2, 3, 4), can be easily calculated.

We randomly generate the coordinates of oi and cj in [−1, 1] and, ri and ϱj in [S, 2S],
[R, 2R], [N, 2N ], [M, 2M ], and [L, 2L], respectively. We take the initial points as t0 =
100(1, 1, . . . , 1)T ∈ RS and t1 = −10(1, 1, . . . , 1)T ∈ RS .

The parameters are chosen in such away that for i = 1, 2, 3, 4, we take αn
i = i

10 and

ϖi = 0.5. For j = 1, 2, 3, 4, we take βj =
j
10 and ωj = 1.5, ρn = n

4n+1 , σn = 1
n+1 ,
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θ = 0.3, and ϵn = 1
(n+1)3 . We use Errorn = ∥tn+1 − tn∥2 < 10−8 as a stopping criterion

in this example. The algorithms are coded in MATLAB 2023b on a personal computer
(13th Gen Intel(R) Core(TM) i7-1355U 1.70 GHz, and a 16.0 GB RAM). All results are

reported in Table 1, Table 2, Figure 1, and Figure 2.

Table 1. Numerical results of Algorithm 1 (when k = 1) for different
choices of S,R,N,M,L

Dimensions Iter. (n) CPU(s) Errorn
S = 3, R = 6, N = 9,M = 12, L = 15 136 0.002492 9.9209e-09

S = 15, R = 30, N = 45,M = 60, L = 75 346 0.008785 9.9804e-09
S = 30, R = 60, N = 90,M = 120, L = 150 558 0.022037 9.9594e-09

S = 100, R = 200, N = 300,M = 400, L = 500 1517 0.809077 9.9800e-09

 

 

(a)

 

 

(b)

 

 

(c)

 

 

(d)

Figure 1. Iter. (n) vs Errorn, experimental results of Algorithm 1
(when k = 1) for different choices of S,R,N,M,L
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Table 2. Numerical results of Algorithm 2 (when k = 1) for different
choices of S,R,N,M,L

Dimensions Iter. (n) CPU(s) Errorn
S = 3, R = 6, N = 9,M = 12, L = 15 35 0.000988 9.6381e-09

S = 15, R = 30, N = 45,M = 60, L = 75 75 0.002604 9.8955e-09
S = 30, R = 60, N = 90,M = 120, L = 150 145 0.005994 9.9132e-09

S = 100, R = 200, N = 300,M = 400, L = 500 257 0.157988 9.8768e-09

 

 

(a)

 

 

(b)

 

 

(c)

 

 

(d)

Figure 2. Iter. (n) vs Errorn, experimental results of Algorithm 2
(when k = 1) for different choices of S,R,N,M,L

5. Conclusion

In this paper, we study a multiple-sets split feasibility problem with multiple out-
put sets in infinite-dimensional Hilbert spaces. We propose relaxed inertial self-adaptive
algorithms and prove strong convergence results for the sequences generated by these
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algorithms. These algorithms generalize the algorithms developed by Kim et al. [18] and
Reich and Tuyen [19]. The important advantage of our proposed algorithms is that they
do not use the least square approximation unlike most algorithms. Finally, we validate the
performance of the proposed algorithms by using a numerical example and the numerical
results show that our proposed algorithms perform well.
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