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1. Introduction

Given a real Hilbert space H with inner product ⟨·, ·⟩ and norm ∥ · ∥. Let T : H → H
be any mapping. Then a point p ∈ H is said to be a fixed point of T if Tp = p. The set
of all fixed points of T is denoted by F (T ), that is, F (T ) = {p : Tp = p}. The mapping
T is said to be

i. nonexpansive if

∥Tu− Tv∥ ≤ ∥u− v∥, for all u, v ∈ H.

ii. quasi-nonexpansive if F (T ) ̸= ∅ and

∥Tu− p∥ ≤ ∥u− p∥, for all u ∈ H, and p ∈ F (T ).

iii. monotone if

⟨Tu− Tv, u− v⟩ ≥ 0, for all u, v ∈ H.

If T is multi–valued, then it is said to be monotone if

⟨ū− v̄, u− v⟩ ≥ 0, for all (u, ū), (v, v̄) ∈ Graph(T ),

where Graph(T ) = {(u, v) ∈ H×H : v ∈ Tu}.
iv. maximally monotone if it is monotone and Graph(T ) is not properly contained

in the graph of any other monotone mapping.

Remark 1.1. It can be shown from (i) and (ii) that the class of nonexpansive mappings
possessing a nonempty fixed point set is contained in the class of quasi-nonexpansive
mappings.

Fixed point theory has got enormous applications across various domains ranging from
pure and applied mathematics, economics, physics, engineering, computer science and
others. Due to these and other applications, fixed point theory has attracted the interest of
many researchers. Thus, several methods of approximating fixed points of different types
of mappings have been introduced over the past years (see, for instance, [4, 23, 26, 38]).
In particular, several iterative methods have been introduced to approximate fixed points
of nonexpansive and quasi-nonexpansive mappings (see, for instance, [3, 8, 10, 11, 13, 16,
25, 28, 32–37, 40, 42, 44] and references therein).

One of the most famous and oldest fixed point iterations for nonexpansive mappings
is the Krasnoselskii–Mann iteration which is given by the update

un+1 = (1− λn)un + λnTun, (1.1)

where H is a real Hilbert space and T : H → H is a nonexpansive mapping. The
Krasnoselskii–Mann iteration was introduced independently by M. A. Krasnoselskii [15]
and W. R. Mann [19]. They obtained weak convergence results under certain assumptions
on the relaxation parameter λn. The Krasnoselskii–Mann iterations play a pivotal role
in numerical variational analysis and optimization in which a number of real world prob-
lems can be modeled as fixed point problems. Moreover, these iterations have got several
applications in convex optimization, signal and image processing, equilibrium problems
and inverse problems. Consequently, many researchers have shown growing interest in
Krasnoselskii–Mann iterations in recent years and several iterative methods have been
proposed (see, for instance, [5–7, 9, 12, 14, 17, 21, 24, 31, 43] and references therein).
Furthermore, numerous improvements have been made to the Krasnoselskii–Mann itera-
tion process (see, for instance, [2, 5, 6, 9] and references therein).
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In 2004, Combettes [6] considered the following inexact Krasnoselskii–Mann type al-
gorithm

un+1 = (1− λn)un + λn(Tun + en), (1.2)

where, {en} represents an error occurring during the evaluation of Tun. He proved that
the sequence {un} generated by (1.2) converges weakly to a fixed point of a nonexpansive

mapping T , with {λn} ⊂ (0, 1) satisfying

∞∑
n=0

λn(1− λn) = ∞ and

∞∑
n=0

λn∥en∥ < ∞.

In 2024, Maulen, Fierro and Peypouquet [20] introduced the following algorithm. Let
Tn : H → H be a family of quasi–nonexpansive mappings with ∩k≥1F (Tk) ̸= ∅, for each
k ∈ N. They obtained a weak convergence of the sequence {un} generated by{

vn = un + θn (un − un−1) ,

un+1 = (1− λn)vn + λnTnvn.

And they also achieved a strong convergence result in the case that {Tn} is a family of
quasi-contractive mappings.

In 2023, Gebregiorgis and Kumam [9] proposed and studied the following inertial
Mann–Halpern method to approximate fixed points. Let C ⊂ H be a nonempty, con-
vex and closed, and T : C → H be a nonexpansive mapping. Let {un} be defined from
arbitrary points v, u−1, u0 ∈ C by

vn = un + θn (un − un−1) ,

wn = un + ϕn (un − un−1) ,

zn = (1− λn)vn + λnTwn,

un+1 = αnv + (1− αn)zn.

(1.3)

They proved that the sequence {un} generated by (1.3) converges strongly to p = PF (T )v,
whenever {θn} ⊂ (0, 1) and {ϕn} ⊂ [0, 1) and {λn} and the parameters {αn} in (0, 1)

satisfy certain condition and lim
n→∞

θn
αn

∣∣∣∣∣∣un − un−1

∣∣∣∣∣∣ = lim
n→∞

ϕn

αn

∣∣∣∣∣∣un − un−1

∣∣∣∣∣∣ = 0.

Very recently, Cortild and Peypouquet [5] proposed and studied the following perturbed
Krasnoselskii–Mann type iteration. Let H be a real Hilbert space and let Tn: H → H be
a family of quasi-contractive mappings. They obtained a strong convergence of sequence
{un} generated by

vn = un + θn (un − un−1) + ϵn,

wn = un + ϕn (un − un−1) + ρn,

un+1 = (1− λn)vn + λnTnwn + θn,

to the unique fixed point of Tn, provided that the inertial and relaxation parameters
satisfy certain conditions and perturbation parameters ϵn, ρn, θn ∈ l1(H).

In light of these aforementioned findings, we pose the following important query.

Question 1.1. Is it possible to identify a technique for solving the inertial perturbed
Krasnoselskii–Mann iteration with a more expansive category of mappings?

Bangmod Int. J. Math. & Comp. Sci., 2025



354 R. Wangkeeree et al.

Inspired by the earlier mentioned results in the literature, especially by the results of
[5] and [9], this paper presents and examines a Halpern type inertial method for approx-
imating the perturbed Krasnoselskii–Mann iteration, where the underlying mapping is
quasi-nonexpansive.

The following is how the rest part of the paper is structured. Section 2 deals with
preliminary definitions, known properties of Hilbert spaces and some lemmas. In Section
3, we introduce our algorithm along with the detailed convergence analysis. In Section 4,
we provide a numerical example to demonstrate the effectiveness of the algorithm. Some
applications of our result on image restoration are given in Section 5, and Section 6 is
devoted to some conclusions.

2. Preliminaries

Important lemmas and definitions that will be used in the sequel are covered in this
section. In the remaining parts of the paper, the real Hilbert space will be represented by
H. The strong and weak convergence of a sequence {un} ⊂ H to a point u are denoted
by un → u and un ⇀ u, respectively.

The following basic relations are straight forward for all u, v ∈ H:

∥u+ v∥2 ≤ ∥u∥2 + 2⟨u+ v, v⟩, and (2.1)

∥u+ v∥2 = ∥u∥2 + 2⟨u, v⟩+ ∥v∥2. (2.2)

If for any sequence {un} ⊂ H and u∗ ∈ H , we have that un ⇀ u∗ and un−Tun → 0, as
n → ∞ implies that Tu∗ = u∗, then we say that T satisfies the demiclosedness principle.

Let C be a nonempty, closed and convex subset of H. The metric projection of a point
u ∈ H onto C is the point, PCu, of C satisfying

∥PCu− u∥ = inf {∥v − u∥ : v ∈ C} .

The metric projection mapping is nonexpansive and it exhibits the following basic
property:

w = PCu ⇐⇒ ⟨u− w, v − w⟩ ≤ 0, for all v ∈ C. (2.3)

Lemma 2.1. [27] Let γ, σ ∈ R. Then for all u, v ∈ H, we have

∥γu+ σv∥2 = γ(γ + σ)∥u∥2 + σ(γ + σ)∥v∥2 − γσ∥u− v∥2.

Lemma 2.2. [18] Let {bn} be a sequence of nonnegative real numbers. If {bni
} is a

subsequence of {bn} such that bni
< bni+1 for all i ∈ N, then there exists an increasing

sequence {mk} of natural numbers such that lim
k→∞

mk = ∞ with the following properties

for sufficiently large number k ∈ N:

bmk
≤ bmk+1 and bk ≤ bmk+1.

Lemma 2.3. [39] Let {cn} be a sequence of nonnegative real numbers with

cn+1 ≤ (1− αn) cn + αndn,

where {αn} ⊂ (0, 1) such that

∞∑
n=1

αn = ∞ and {dn} is a sequence of real numbers such

that lim sup
n→∞

dn ≤ 0, then lim
n→∞

cn = 0.

Bangmod Int. J. Math. & Comp. Sci., 2025



A Halpern Method for Solving Perturbed Double Inertial Krasnoselskii–Mann Iterations 355

Lemma 2.4. [22] Let A: H → 2H be a maximally monotone mapping and B: H → H be
any mapping. Define Tr := (I + rA)−1(I − rB), for r > 0. Then

F (Tr) = zer(A+B),

where zer(A+B) = {x ∈ H | 0 ∈ (A+B)x}.

3. Main results

Here, we describe our algorithm and discuss its detailed convergence analysis. We are
going to assume the following for the convergence analysis.
Conditions

(C1) Let T : H → H be a quasi-nonexpansive mapping;

(C2) Let {αn} ⊂ (0, 1) be such that lim
n→∞

αn = 0 and

∞∑
n=1

αn = ∞;

(C3) Let {ζn} be a sequence of positive numbers such that lim
n→∞

ζn
αn

= 0;

(C4) Let {λn} ⊂ (0, 1) with inf
n

λn > 0 and sup
n

λn < 1;

(C5) Let ϵn, ρn, σn, ηn be in H such that ∥ϵn∥ = o(αn), ∥ρn∥ = o(αn), ∥σn∥ = o(αn)
and ∥ηn∥ = o(αn).

We now state our proposed algorithm and discuss its convergence analysis.

Algorithm 3.1

Initialization: Let ū, u0, u1 ∈ H and α ∈ [0, 1). Set n = 1. Then compute {un} as
follows:
Step 1: For the iterates un−1, un ∈ H, choose θn and ϕn such that 0 ≤ θn ≤ δn and
0 ≤ ϕn ≤ δn, where

δn =

 min

{
α,

ζn
∥un − un−1∥

}
, if ∥un − un−1∥ ̸= 0,

α, otherwise.
(3.1)

Step 2: Compute
vn = un + θn (un − un−1) + ϵn,

wn = un + ϕn (un − un−1) + ρn,

zn = (1− λn)vn + λnTwn + σn,

un+1 = αnū+ (1− αn)Tzn + ηn.

(3.2)

Remark 3.1. One can deduce from (3.1) and condition (C3) that

lim
n→∞

θn
αn

∣∣∣∣∣∣un − un−1

∣∣∣∣∣∣ = lim
n→∞

ϕn

αn

∣∣∣∣∣∣un − un−1

∣∣∣∣∣∣ = 0, (3.3)

which in turn implies that

lim
n→∞

θn∥un − un−1∥ = lim
n→∞

ϕn∥un − un−1∥ = 0. (3.4)

Theorem 3.2. If conditions (C1) − (C5) hold, then the sequence {un} generated by
Algorithm 3.1 is bounded.
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Proof. Let p ∈ F (T ). Then we have from (3.2) and quasi–nonexpansiveness of T that

∥un+1 − p∥ = ∥αnū+ (1− αn)Tzn + ηn − p∥
= ∥αn(ū− p) + (1− αn)(Tzn − p) + ηn∥
≤ αn∥ū− p∥+ (1− αn)∥Tzn − p∥+ ∥ηn∥
≤ αn∥ū− p∥+ (1− αn)∥zn − p∥+ ∥ηn∥.

(3.5)

Since T is quasi–nonexpansive, it follows from (3.2) that

∥zn − p∥ = ∥(1− λn)vn + λnTwn + σn − p∥
≤ ∥(1− λn)(vn − p) + λn(Twn − p)∥+ ∥σn∥
≤ (1− λn)∥vn − p∥+ λn∥wn − p∥+ ∥σn∥.

(3.6)

We also have from (3.2) that

∥vn − p∥ = ∥un + θn(un − un−1) + ϵn − p∥
≤ ∥un − p∥+ θn∥un − un−1∥+ ∥ϵn∥.

(3.7)

Similarly, we obtain from (3.2) that

∥wn − p∥ ≤ ∥un − p∥+ ϕn∥un − un−1∥+ ∥ρn∥. (3.8)

Substituting (3.7) and (3.8) into (3.6), we obtain

∥zn − p∥ ≤ (1− λn) [∥un − p∥+ θn∥un − un−1∥+ ∥ϵn∥]
+ λn [∥un − p∥+ ϕn∥un − un−1∥+ ∥ρn∥] + ∥σn∥.

(3.9)

Combining (3.9) and (3.5) results in

∥un+1 − p∥ ≤ αn∥ū− p∥+ (1− αn)
[
(1− λn) [∥un − p∥+ θn∥un − un−1∥+ ∥ϵn∥]

]
+ (1− αn)

[
λn [∥un − p∥+ ϕn∥un − un−1∥+ ∥ρn∥]

]
+ (1− αn)∥σn∥

≤ αn∥ū− p∥+ (1− αn)∥un − p∥+ θn∥un − un−1∥+ ϕn∥un − un−1∥
+ ∥ϵn∥+ ∥ρn∥+ ∥σn∥+ ∥ηn∥.

(3.10)

Let us now denote

K = 7max

{
∥ū− p∥, sup

n≥1

θn
αn

∣∣∣∣∣∣un − un−1

∣∣∣∣∣∣, sup
n≥1

ϕn

αn

∣∣∣∣∣∣un − un−1

∣∣∣∣∣∣,
sup
n≥1

∥ϵn∥
αn

, sup
n≥1

∥ρn∥
αn

, sup
n≥1

∥σn∥
αn

, sup
n≥1

∥ηn∥
αn

}
.

With this notation, Inequality (3.10) simplifies to

∥un+1 − p∥ ≤ (1− αn) ∥un − p∥+ αnK

≤ max {∥un − p∥, K}
...

≤ max {∥x1 − p∥, K} .

(3.11)

Therefore, {un} is bounded. Boundedness of {vn}, {wn} and {zn} readily follows from
the boundedness of {un} and (3.2). This completes the proof our theorem.
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Theorem 3.3. If conditions (C1) − (C5) hold, then the sequence {un} generated by
Algorithm 3.1 converges strongly to p∗ = PF (T )ū.

Proof. Let p∗ = PF (T )ū. Then we have from (3.2), (2.1) and quasi–nonexpansiveness of
T that

∥un+1 − p∗∥2 = ∥αnū+ (1− αn)Tzn + ηn − p∗∥2

= ∥αn(ū− p∗) + ηn + (1− αn)(Tzn − p∗)∥2

≤ (1− αn)∥Tzn − p∗∥2 + 2∥ηn∥∥un+1 − p∗∥
+ 2αn⟨ū− p∗, un+1 − p∗⟩

≤ (1− αn)∥zn − p∗∥2 + 2∥ηn∥∥un+1 − p∗∥
+ 2αn⟨ū− p∗, un+1 − p∗⟩.

(3.12)

Again, we have from (3.2), (2.1), Lemma 2.1 and quasi–nonexpansiveness of T that

∥zn − p∗∥2 = ∥(1− λn)vn + λnTwn + σn − p∗∥2

= ∥(1− λn)(vn − p∗) + λn(Twn − p∗) + σn∥2

≤ ∥(1− λn)(vn − p∗) + λn(Twn − p∗)∥2 + 2⟨σn, zn − p∗⟩
≤ (1− λn)∥vn − p∗∥2 + λn∥wn − p∗∥2

− λn(1− λn)∥Twn − vn∥2 + 2∥σn∥∥zn − p∗∥.

(3.13)

From (3.2), (2.1) and the Cauchy Schwarz Inequality, we obtain

∥vn − p∗∥2 = ∥un + θn(un − un−1) + ϵn − p∗∥2

≤ ∥un − p∗∥2 + 2⟨θn(un − un−1) + ϵn, vn − p∗⟩
≤ ∥un − p∗∥2 + 2∥θn(un − un−1) + ϵn∥∥vn − p∗∥.

(3.14)

Similarly, we obtain that

∥wn − p∗∥2 ≤ ∥un − p∗∥2 + 2∥ϕn(un − un−1) + ρn∥∥wn − p∗∥. (3.15)

Combination of (3.13), (3.14) and (3.15) gives

∥zn − p∗∥2 ≤ (1− λn)
[
∥un − p∗∥2 + 2∥θn(un − un−1) + ϵn∥∥vn − p∗∥

]
+ λn

[
∥un − p∗∥2 + 2∥ϕn(un − un−1) + ρn∥∥wn − p∗∥

]
+ 2∥σn∥∥zn − p∗∥ − λn(1− λn)∥Twn − vn∥2

≤ ∥un − p∗∥2 + 2∥θn(un − un−1) + ϵn∥∥vn − p∗∥
+ 2∥ϕn(un − un−1) + ρn∥∥wn − p∗∥
+ 2∥σn∥∥zn − p∗∥ − λn(1− λn)∥Twn − vn∥2.

(3.16)

Substituting (3.16) into (3.12), we obtain

∥un+1 − p∗∥2 ≤ (1− αn)∥un − p∗∥2 + 2∥θn(un − un−1) + ϵn∥∥vn − p∗∥
+ 2∥ϕn(un − un−1) + ρn∥∥wn − p∗∥+ 2∥σn∥∥zn − p∗∥
+ 2∥ηn∥∥un+1 − p∗∥+ 2αn⟨ū− p∗, un+1 − p∗⟩
− (1− αn)λn(1− λn)∥Twn − vn∥2.

(3.17)
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Denote Ωn = ∥un − p∗∥2 and

∆n =
2

αn
∥θn(un − un−1) + ϵn∥∥vn − p∗∥+ 2

αn
∥ϕn(un − un−1) + ρn∥∥wn − p∗∥

+
2

αn
∥σn∥∥zn − p∗∥+ 2

αn
∥ηn∥∥un+1 − p∗∥+ 2⟨ū− p∗, un+1 − p∗⟩.

Using these notations and disregarding the last term of (3.17) we get

Ωn+1 ≤ (1− αn)Ωn + αn∆n. (3.18)

Moreover, rearranging (3.17) gives

(1− αn)λn(1− λn)∥Twn − vn∥2 ≤ Ωn − Ωn+1 + αn

(
∆n − Ωn

)
. (3.19)

To show that the sequence {Ωn} of real numbers converges strongly to zero, we consider
two cases.

Case I. Suppose there exists N ∈ N such that Ωn+1 ≤ Ωn for all n ≥ N . Then {Ωn}
is convergent. Thus, we obtain from (3.19) and the conditions on αn and λn that

lim
n→∞

∥Twn − vn∥ = 0. (3.20)

Moreover, we have

∥Twn − wn∥ ≤ ∥vn − wn∥+ ∥Twn − vn∥
≤ ∥Twn − vn∥+ |θn − ϕn|∥un − un−1∥+ ∥ϵn − ρn∥.

(3.21)

From (3.4), (3.20) and the conditions on ϵn and ρn, we have that limit as n → ∞ of the
right hand side of (3.21) is zero. Thus, it follows by the Squeezing Theorem that

lim
n→∞

∥Twn − wn∥ = 0. (3.22)

Since {un} is bounded, there exists a subsequence {unk
} of {un} such that unk

⇀ ů as
k → ∞ and

lim sup
n→∞

⟨ū− p∗, un − p∗⟩ = lim
k→∞

⟨ū− p∗, unk
− p∗⟩. (3.23)

Since lim
k→∞

∥wnk
− unk

∥ = 0, one concludes that wnk
⇀ ů. Thus, we obtain from (3.21)

and the demiclosedness property of I − T that ů ∈ F (T ).
Since p∗ = PF (T )ū, we have from (2.3) and (3.23) that

lim sup
n→∞

⟨ū− p∗, un − p∗⟩ = lim
k→∞

⟨ū− p∗, unk
− p∗⟩ = ⟨ū− p∗, ů− p∗⟩ ≤ 0, (3.24)

and this implies that

lim sup
n→∞

⟨ū− p∗, un+1 − p∗⟩ ≤ 0. (3.25)

Thus, we conclude from (3.3), boundedness of {un} {vn}, {wn}, {zn} and (3.25) that
lim sup
n→∞

∆n ≤ 0, and hence it follows by (3.18) and Lemma 2.3 that lim
n→∞

Ωn = 0, which

implies that lim
n→∞

∥un − p∗∥ = 0, that is, un → p∗ as n → ∞.

Case II. Suppose that there exists a subsequence {Ωni
} of {Ωn} such that Ωni

<
Ωni+1, for all i ≥ 0. Then, by Lemma 2.2, there exists a non-decreasing sequence {mk}
of positive integers such that lim

k→∞
mk = ∞ and

Ωmk
≤ Ωmk+1 and Ωk ≤ Ωmk+1, (3.26)
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for all positive integers k. In this case, relation (3.19) takes the form

(1− αmk
)λmk

(1− λmk
)∥Twmk

− vmk
∥2 ≤ Ωmk

− Ωmk+1 + αmk
(∆mk

− Ωmk
) . (3.27)

Taking the limit of (3.27) and taking (3.26) and the properties of αmk
and λmk

into
account, we get lim

k→∞
∥Twmk

− vmk
∥ = 0. Using the same techniques as in Case I, we

obtain

lim sup
k→∞

∆mk
≤ 0. (3.28)

Thus, we obtain from (3.18) and (3.26) that

αmk
Ωmk

≤ Ωmk
− Ωmk+1 + αmk

∆mk
≤ αmk

∆mk
,

which implies that

Ωmk
≤ ∆mk

. (3.29)

Taking the limit of (3.29) and using (3.28), we get lim
k→∞

Ωmk
= 0 and hence lim

k→∞
Ωmk+1 =

0. Thus, it follows from (3.26) that lim
k→∞

Ωk = 0, and this in turn implies that lim
k→∞

∥uk −
p∗∥ = 0 and hence the proof is complete.

The following are direct consequences of our main theorem.

Corollary 3.4. Let the conditions (C2) − (C5) hold and T : H → H be a nonexpansive
mapping with F (T ) ̸= ∅. Then the sequence {un} generated by Algorithm 3.1 converges
strongly to p∗, where p∗ = PF (T )ū.

Corollary 3.5. Let the conditions (C2)−(C5) hold and T : H → H be a quasi-contractive
mapping. Then the sequence {un} generated by Algorithm 3.1 converges strongly to the
unique fixed point of T .

If ϵn = ρn = σn = ηn = 0, then Algorithm 3.1 reduces to its non-perturbed version
and we obtain the following corollary.

Corollary 3.6. Let conditions (C1) − (C5) with ϵn = ρn = σn = ηn = 0, for all n ≥ 1
hold. Then the sequence {un} generated by Algorithm 3.1 converges strongly to p∗, where
p∗ = PF (T )ū.

Many other consequences can also be drawn by letting some of the inertial and per-
turbation parameters to be zero, while the others are kept to be nonzero.

4. Numerical example

In this section, we provide a quasi-nonexpansive mapping that is not nonexpansive and
experimentally validate our theoretical results.

Example 4.1. Let H = R with the usual norm and T : R → R be the mapping defined
by

Tu =


u

2
cos

(
1

u

)
if u ̸= 0,

0 otherwise.

Then T is quasi-nonexpansive with F (T ) = {0}, but it is not nonexpansive. To see this,
we have for all u ∈ (−∞, 0) ∪ (0,∞) that
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|Tu− 0| =
∣∣∣u
2
cos

(
1

u

)
− 0

∣∣∣ ≤ 1

2

∣∣∣u− 0
∣∣∣ < |u− 0|.

However, if we take u =
1

π
and v =

1

2π
. Then we get

|Tu− Tv| =
∣∣∣ 1

2π
cos(π)− 1

4π
cos(2π)

∣∣∣ = 3

4π
.

But, |u− v| =
∣∣∣ 1
π
− 1

2π

∣∣∣ = 1

2π
<

3

4π
. Thus, T is not nonexpansive.

Moreover, we have conducted a numerical experiment for this example using MATLAB

programming and we obtained the following results. We took ζn =
1

n2 + 10
, αn =

1

n+ 10
,

ϵn =
1

n2 + 2
, ρn =

1

n2 + 2
, σn =

1

n2 + 2
, ηn =

1

n2 + 2
, λn =

1

n+ 2
+

1

5
, ū = 0.1 and p∗ =

0. Thus, conditions (C1)− (C5) of Algorithm 3.1 are satisfied. We obtained the following
graphs which demonstrate that the norm of the error term sequence En = {un − p∗},
n ≥ 1, decreases and it converges to zero for the initial points x0 = 2, x1 = 6, α = 0.9
and different perturbation and inertial parameters.

(a) Inertial vs non-inertial
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(b) Perturbed vs non-perturbed

Figure 1. Convergence of Algorithm 3.1 for different values of the in-
ertial and perturbation parameters.

Remark 4.2. Figure 1 depicts convergence of the method for different inertial and pertur-
bation parameters. Particularly, sub–figure (A) shows that the inertial method (α ̸= 0)
of Algorithm 3.1 converges at a faster rate than the non–inertial method (α = 0). It
can also be observed from sub-figure (B) that convergence of the non–perturbed version
(ϵn = ρn = σn = ηn = 0) of the algorithm is faster than that of the perturbed version.
Though the perturbation parameters influence how quickly the method converges, they
do not affect the algorithm ultimate convergence, indicating that the method remains
stable under certain perturbations.

In addition to this, we have conducted comparison of the method introduced in this
paper with the results of [5], [9] and [20]. Since the mapping considered in [5] is a
quasi–contraction mapping, we took Tx = x

2 for the comparison case, keeping all other
parameters the same as that of Example 4.1.
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Algorithm 3.1

Figure 2. Comparison of convergence rates with results in the literature.

Remark 4.3. Figure 2 shows the comparison between Algorithm 3.1 of this paper and the
main algorithms in Cortild and Peypouquet [5] (labeled as CP–Algorithm), Gebregiorgis
and Kumam [9] (labeled as GK–Algorithm), and Maulen, Fierro and Peypouquet [20]
(labeled MFP–Algorithm). The fact that our method converges considerably more quickly
than other approaches in the literature indicates that our approach works more effectively.

5. Applications to image restoration problems

Image deblurring refers to the restoration of sharpness and fine details in an image
by mitigating the effects of blur introduced by different factors such as camera shake,
subject movement, de-focused lenses, or environmental conditions such as low light or
wind. Image deblurring is an inherent inverse problem, where the goal is to reverse
the effects of the blurring process, and it is an important problem in the field of image
processing.

The concept of image deblurring is to restore an original image u from the degraded
image ν. The images u ∈ Rn×1 and ν ∈ Rm×1 are related by the mathematical model

ν = ∆u+ ω,

where ∆ ∈ Rm×n is a blur operator and ω ∈ Rm×1 is noise. To find the restored image,
we can solve the following optimization problem:
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find u ∈ argminu∈Rn×1

{
1

2
∥∆u− ν∥22 + τ∥u∥1

}
, (5.1)

where τ is the regularization parameter, ∥ · ∥1 is the l1 norm and ∥ · ∥2 is the usual norm.

If we let f(u) =
1

2
∥∆u − ν∥2 and g(u) = τ∥u∥1, then solving (5.1) is equivalent to

solving the monotone inclusion problem of

finding u ∈ Rn×1 such that 0 ∈ (A+B)u, (5.2)

with A = ∇f and B = ∂g, where ∂g is the sub-differential of g, that is, ∂g(x) =
{v ∈ Rn : g(y) ≥ g(x) + ⟨v, y − x⟩, for all y ∈ Rn} and ∇f is the gradient of f . We recall
that ∇f is monotone and ∂g is maximally monotone. For further knowledge of inclusion
problems and their applications in image restoration, one can refer (for instance, [1, 29,
30, 41] and references therein). Solving (5.2), in turn, is equivalent to finding the fixed
point of the mapping

Trn = (I + rnB)−1(I − rnA), (5.3)

for rn > 0 (see, Lemma 2.4), provided that the set of solutions of (5.2) is nonempty. For
the image restoration, we begun by selecting clear original mandrill and butterfly images.
Then we applied four different types of blurring on each image, namely the average
blur, disk blur, Gaussian blur, and motion blur to get some degraded images. Then we
recovered the resulting blurred images. We also analyze the Structural Similarity Index
Measure (SSIM) and Improvement in the Signal–to–Noise Ratio (ISNR) to evaluate the
quality of the deblurred images and effectiveness of the deblurring method we employed.
For these aforementioned image quality measures, we used the formulas

SSIM(u, un) =
(2µuµun

+ C1)(2σuun
+ C2)

(µ2
u + µ2

un
+ C1)(σ2

u + σ2
un

+ C2)
, and

ISNR(n) = 10 log10

(
∥u− ν∥22
∥u− un∥22

)
,

where u, ν and un are the original clean image, the blurred image, and the recovered
image, respectively; µu and µun

are intensities of the images u and un, respectively; σ
2
u

and σ2
un

are the variances of u and un, respectively; σuun
is the covariance between u and

un; C1 = (κ1L)
2, C2 = (κ2L)

2 are stabilization constants with the default constants κ1

and κ2 (set in our bese to be κ1 = 0.01 and κ2 = 0.03) and L is the dynamic range of pixel
values (in our case, we took L = 255). In our experimentation, we employed different
parameters for the different types of blurs. The outcomes of the conducted experiments
for n = 3000 iterations, regularization parameter τ = 0.001, rn = 0.5− 150n

1000n+100 , average
blur of kernel 15 × 15 matrix, disk blur with radius of blur r = 6 pixels, Gaussian blur
with standard deviation σ = 3 pixels, and motion blur of length l = 9 pixels, are depicted
in Figures 3 through 10 below.

Moreover, we have tried to compare the quality of images restored by our algorithm
and the main algorithm of [9] against the aforementioned SSIM and ISNR metrics using
different parameters for each type of blur.
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(a) Original image (b) Average blurred image

(c) Restored by Algorithm 3.1 (d) Restored by GK–Algorithm

(e) Restored by MFP–Algorithm

Figure 3. Original and average blurred images of a mandrill along
with the restored images by Algorithm 3.1, GK–Algorithm and MFP–
Algorithm, respectively.
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(a) Disk blurred image (b) Restored by Algorithm 3.1

(c) Restored by GK–Algorithm (d) Restored by MFP–Algorithm

Figure 4. Disk blurred image of a mandrill along with the restored
images by Algorithm 3.1, GK–Algorithm and MFP–Algorithm, respec-
tively.

(a) Gaussian blurred image (b) Restored by Algorithm 3.1
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(c) Restored by GK–Algorithm (d) Restored by MFP–Algorithm

Figure 5. Gaussian blurred image of a mandrill along with the restored
images by Algorithm 3.1, GK–Algorithm and MFP–Algorithm, respec-
tively.

(a) Motion blurred image (b) Restored by Algorithm 3.1

(c) Restored by GK–Algorithm (d) Restored by MFP–Algorithm

Figure 6. Original and motion blurred image of a mandrill along
with the restored images by Algorithm 3.1, GK–Algorithm and MFP–
Algorithm, respectively.
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Table 1. Performance comparison, in terms of ISNR and SSIM, between
Algorithm 3.1, the GK–Algorithm and MFP–Algorithm for various blur-
ring methods applied to the mandrill images.

Type of blur

Method used
Algorithm 3.1 GK–Algorithm MFP–Algorithm

ISNR SSIM ISNR SSIM ISNR SSIM

Average blur (Kernel=5× 5) 4.4579 0.8881 1.8248 0.7214 2.7755 0.7807

Disk blur (r = 2 pxl) 7.6840 0.9386 3.7865 0.8480 5.6274 0.9024

Gaussian blur (σ = 0.1 pxl) 6.3848 0.9710 5.0097 0.9569 6.2000 0.9672

Motion blur (l = 3 pxl) 8.7536 0.9613 4.5405 0.9039 6.3030 0.9359

Remark 5.1. In Figure 3, image 3(A) is the original clean image of the mandrill, image
3(B) is the image obtained by imposing average blur on image 3(A) while 3(C), 3(D)
3(E) reveal the images obtained by deblurring image 3(B) using Algorithm 3.1, the main
Algorithm of [9] and that of [20], respectively.

Similarly, the images in Figures 4, 5, 6 reveal the disk, Gaussian and motion blurred
images, respectively, of the the mandrill image along with respective deblurred images.

In order to clearly observe the resemblance of the restored images in Figures 3–6 with
the original image, we have tried to analyze the SSIM and ISNR metrics for each restored
image under each blur type. Table 1 shows the detailed comparison of ISNR and SSIM
of Alg. 3.1 and the main algorithms of [9] and [20] for the four types of blurs applied
on the clean original image. It can also be observed from these table that our method
has relatively better performance than that of [9] and [20]. It can also be seen from
Table 1 that the proposed method exhibits superior performance in handling motion
blur, surpassing other evaluated blur types.

Table 2. Comparison of Algorithm 3.1, GK–Algorithm and MFP–
Algorithm using motion blur with different blur lengths applied on the
mandrill image.

Length of blur

Method used
Algorithm 3.1 GK–Algorithm MFP–Algorithm

ISNR SSIM ISNR SSIM ISNR SSIM

l = 3 pixels 8.7536 0.9613 4.5405 0.9039 6.3030 0.9359

l = 9 pixels 7.4527 0.8943 3.9074 0.7584 5.5413 0.8371

l = 12 pixels 7.6528 0.8925 3.6607 0.7156 5.3692 0.8143

l = 15 pixels 6.7280 0.8584 3.3554 0.6680 4.7454 0.7669

l = 18 pixels 5.8790 0.8085 3.1737 0.6260 4.3037 0.7163

l = 21 pixels 4.9106 0.7494 2.8157 0.5720 3.6668 0.6532
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Radius of disk blur

Method used
Algorithm 3.1 GK–Algorithm MFP–Algorithm

ISNR SSIM ISNR SSIM ISNR SSIM

r = 2 pixels 7.6840 0.9386 3.7865 0.8480 5.6271 0.9024

r = 4 pixels 5.2155 0.8335 2.6309 0.6834 3.6459 0.7531

r = 6 pixels 3.7361 0.7307 2.0233 0.5760 2.7337 0.6640

r = 8 pixels 2.9529 0.6360 1.7723 0.5047 2.3115 0.5632

r = 10 pixels 2.6376 0.5879 1.6275 0.4588 2.0908 0.5121

r = 15 pixels 2.3051 0.4903 1.6089 0.3880 1.9672 0.4287

Table 3. Comparison of Alg. 3.1, GK–Alg. and MFP – Alg for disk
blur with different radii applied on the mandrill image.

Remark 5.2. In motion blur, as the length of the blur increases in image restoration
problems, the restoration process becomes more challenging due to the multiple effects of
information loss, noise amplification, difficulties in point spread function (PSF) estima-
tion, increased computational demands, and perceptual limitations and this is comple-
mented by the of the ISNR and SSIM values in Table 2. Similarly, as shown in Table 3,
increasing the blur radius in a motion blur leads to a decline in the effectiveness of the
restoration process.

In order to show the consistence of our method, we have conducted a similar experiment
for a butterfly image. The resulting blurred and restored images can be seen in Figures
7–10 below.

(a) Original butterfly image (b) Average blurred image
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(c) Restored by Algorithm 3.1 (d) Restored by GK–Algorithm

(e) Restored by MFP–Algorithm

Figure 7. Original butterfly and average blurred images of a butterfly
along with the restored images by Algorithm 3.1, GK–Algorithm and
MFP–Algorithm, respectively.

(a) Disk blurred image (b) Restored by Algorithm 3.1.
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(c) Restored by GK–Algorithm (d) Restored by MFP–Algorithm

Figure 8. Disk blurred image of a butterfly along with the restored
images by Algorithm 3.1, GK–Algorithm and MFP–Algorithm, respec-
tively.

(a) Gaussian blurred image (b) Restored by Algorithm 3.1

(c) Restored by GK–Algorithm (d) Restored by MFP–Algorithm

Figure 9. Gaussian blurred image of a butterfly along with the restored
images by Algorithm 3.1, GK–Algorithm and MFP–Algorithm, respec-
tively
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(a) Motion blurred image (b) Restored by Algorithm 3.1

(c) Restored by GK–Algorithm (d) Restored by MFP–Algorithm

Figure 10. Motion blurred image of a butterfly along with the restored
images by Algorithm 3.1, GK–Algorithm and MFP–Algorithm, respec-
tively.

Table 4. Comparison, in terms of ISNR and SSIM, between Algorithm
3.1, the GK–Algorithm and MFP–Algorithm for various blurring meth-
ods applied to the butterfly images.

Type of blur

Method used
Algorithm 3.1 GK–Algorithm MFP–Algorithm

ISNR SSIM ISNR SSIM ISNR SSIM

Average blur (Kernel=15× 15) 3.9005 0.7698 2.6141 0.7417 3.4038 0.7604

Disk blur (r = 9 pxl) 6.8749 0.8093 4.0822 0.7684 5.4988 0.7907

Gaussian blur (σ = 3 pxl) 4.6463 0.8603 3.8232 0.8439 4.4781 0.8556

Motion blur (l = 12 pxl) 10.1697 0.8904 6.3055 0.8653 8.3077 0.8824
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Table 5. Initial SSIM and ISNR measurements of Algorithm 3.1 for the
Mandrill and Butterfly images that were deteriorated by different types
of blur.

Blur type Blurring parameters
Mandrill Butterfly

ISNR SSIM ISNR SSIM

Average averaging filter = 18 0 0.4650 0 0.7352

Disk radius = 12 0 0.5465 0 0.7807

Gaussian Gaussian blur kernel = 20, standard devi-

ation (σ) = 6

0 0.4138 0 0.7208

Motion pixels length = 15, degrees angle = 40 0 0.8589 0 0.8692

Remark 5.3. Figure 7 Sub-figure (A) displays the original, unaltered butterfly im-
age. Sub-figure (B) illustrates the image after the application of average blur. Sub-
figures (C), (D) and (E) depict the results of deblurring the blurred image in sub-figure (B)
using Algorithm 3.1, GK–Algorithm [9] and MFP–Algorithm [20], respectively.

Similarly, Figures 8, 9, and 10 showcase the effects of disk blur, Gaussian blur, and
motion blur, respectively, on the “butterfly” image. Each figure includes the blurred image
alongside the corresponding deblurred output obtained by Algorithm 3.1, GK–Algorithm
[9], and MFP–Algorithm [20].

Table 4 provides a quantitative comparison of the ISNR and SSIM metrics for both
Algorithm 3.1 and the main algorithm in [9] and [20] across all the four types of blur. The
results indicate that Algorithm 3.1 consistently performs better than the results in [9] and
[20], with particularly notable improvements observed in the motion blur scenario since
higher ISNR value corresponds to the better quality of the restored image.

It can generally be observed from Tables 1, 4, and 5 that the values of the SSIMs of
the restored images are far better than the degraded images for all blur types applied on
both the Mandrill and the Butterfly images.

6. Conclusions

An inertial Halpern-type approach for approximating solutions of perturbed Krasnoselskii–
Mann iterations was presented in this paper. We discussed the strong convergence analysis
under the assumption that the underlying mapping is quasi–nonexpansive. A numerical
example was provided to demonstrate the practicality of our method. Furthermore, we
have explored the application of the method in image restoration problems, specifically
addressing cases involving Average blur, Disk blur, Gaussian blur, and motion blur ap-
plied on Mandrill and Butterfly images.

To assess the efficiency of our proposed image restoration algorithm application, we
conducted a comparison focusing on the two key performance metrics: the ISNR and
SSIM. These metrics were evaluated against those obtained from the algorithms presented
in [9] and [20]. Our findings from ISNR and SSIM metrics indicate that our method
achieves superior performance in both metrics, suggesting a more effective restoration
capability compared to the referenced methods. Generally, the result in this work extends
several existing results in the literature in various directions. Specifically, it generalizes the
finding of [5], where the mapping considered in their strong convergence theorem is quasi-
contractive, while in our case it is quasi–nonexpansive a broader class than contractive
mappings. In addition to this, our method dispenses the assumption that the perturbation
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parameters are summable, which is a requirement for the strong convergence in [5]. In

addition, our result improves upon that of [9] as the assumptions lim
n→∞

θn
αn

∣∣∣∣∣∣un−un−1

∣∣∣∣∣∣ = 0

and lim
n→∞

ϕn

αn

∣∣∣∣∣∣un − un−1

∣∣∣∣∣∣ = 0, which were required in their work, are not imposed as

assumptions in our method because they follow directly from (3.1). As such, our result
generalizes and strengthens several related results in the existing literature.
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