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Abstract The main objective of this study is to introduce an extended class of interpolative rational

contractions in bipolar metric spaces and to establish common fixed point theorems for such mappings.

Specifically, we consider mappings that satisfy a general contractive condition involving multiple distance
terms and an associated control function, broadening the existing framework of fixed point theory. Our

results not only unify but also significantly improve upon several well-known fixed point theorems in the

current literature, including classical results for single mappings as well as those for pairs of mappings.
Moreover, the common fixed point results presented in this work are particularly noteworthy because

they apply to pairs of mappings that share a common fixed point, even without requiring strict mono-
tonicity or continuity assumptions usually required in traditional fixed point theorems. This enhancement

broadens the scope of applications to a wider range of problems in nonlinear analysis and optimization.

To demonstrate the practical relevance and sharpness of our theoretical findings, we also provide

illustrative examples. These examples highlight how the newly established theorems can be applied in

various mathematical settings, showcasing their robustness and versatility.

MSC: 47H09, 47H10

Keywords: Bipolar Metric Spaces; Interpolative Contractions; Rational Type Contractions

Published online: 12 August 2025
c⃝ 2025 By TaCS-CoE, All rights reserve.

 

 

Published by Center of Excellence in Theoretical and Computational Science (TaCS-CoE)

Please cite this article as: J. Limprayoon et al., Common Interpolative Rational Type Contractions
in Bipolar Metric Spaces, Bangmod Int. J. Math. & Comp. Sci., Vol. 11 (2025), 305–327. https:
//doi.org/10.58715/bangmodjmcs.2025.11.14

https://bangmodjmcs.com/index.php/bangmodmcs
http://crossmark.crossref.org/dialog/?doi=10.58715/bangmodjmcs.2025.11.14&domain=pdf
https://doi.org/10.58715/bangmodjmcs.2025.11.14
https://doi.org/10.58715/bangmodjmcs.2025.11.14


306 J. Limprayoon et al.

1. Introduction

Fixed point theory plays a vital role in mathematics and beyond, with applications in
diverse fields such as game theory, mathematical economics, optimization, approximation
theory, and differential equations. It also appears in biology, chemistry, physics, and
engineering. In 1922, Stefan Banach [1] provided a landmark result showing that any
contraction mapping in a complete metric space has a unique fixed point. This result,
known as the Banach contraction principle or Banach fixed point theorem, has inspired
a great deal of research and offers a simple iterative way to find the fixed point.

Over time, many researchers have expanded the classical metric space structure to
new settings by relaxing certain conditions or changing how distances are measured. In
particular, Mutlu et al. [2] introduced bipolar metric spaces, which consider the distance
between points in two different sets. This idea extends the scope of fixed point theorems,
including the Banach result, to broader contexts (see [6–12] and references therein).

The concept of interpolative contractions, introduced by Karapinar [13], generalizes

several types of contractions. Well-known results by Ćirić [14], Reich [15], Rus [16],
Hardy and Rogers [17], Kannan [18], and Bianchini [19] have all been extended within
this framework (see also [20–22]).

In this paper, we combine these ideas to develop new results on common fixed points
in bipolar metric spaces. We introduce interpolative rational contractions that guarantee
the existence of common fixed points for certain mappings. Our findings not only extend
known results but also highlight the flexibility of the bipolar metric space approach.

2. Preliminaries

Definition 2.1. [2] Let H,P ̸= ∅ and d : H × P → [0,∞) be a function. d is called a
bipolar metric on pair (H,P ), if the following properties are satisfied

(b0) if d(m, v) = 0, then m = v;
(b1) if m = v, then d(m, v) = 0;
(b2) if m, v ∈ H ∩ P, then d(m, v) = d(v,m);
(b3) d(m1, v2) ≤ d(m1, v1) + d(m2, v1) + d(m2, v2)

for all (m, v), (m1, v1), (m2, v2) ∈ H × P.

Then the triple (H,P, d) is called a bipolar metric space.

Definition 2.2. [2] Let (H1, P1) and (H2, P2) be pairs of sets and given a function
S : H1 ∪ P1 → H2 ∪ P2.

(i) If S(H1) ⊆ H2 and S(P1) ⊆ P2, then S is called a covariant map from (H1, P1)
to (H2, P2) and denoted this with S : (H1, P1) ⇒ (H2, P2).

(ii) If S(H1) ⊆ P2 and S(P1) ⊆ H2, then S is called a contravariant map from (H1, P1)
to (H2, P2) and denoted this S : (H1, P1) ⇄ (H2, P2).

If d1 and d2 are bipolar metrics on (H1, P1) and (H2, P2), respectively, we also use the
notations.

S : (H1, P1, d1) ⇒ (H2, P2, d2) and S : (H1, P1, d1) ⇄ (H2, P2, d2).

Definition 2.3. [2] Let (H,P, d) be a bipolar metric space.

(i) A point ρ ∈ H ∪ P is called a left point if ρ ∈ H, a right point if ρ ∈ P and a
central point if it is both left and right point.
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(ii) A sequence {mn} on the set H is called a left sequence and a sequence {vn} on
P is called a right sequence. In a bipolar metric space, a left or a right sequence
is called simply a sequence.

(iii) A sequence {mn} is called convergent to a point ρ, if {mn} is a left sequence,
ρ is a right point and limn→∞ d(mn, ρ) = 0 or {mn} is a right sequence, ρ is a
left point and limn→∞ d(ρ,mn) = 0. A bisequence {(mn, vn)} on (H,P, d) is a
sequence on the set H × P. If the sequences {mn} and {vn} are convergent, then
the bisequence {(mn, vn)} is called convergent, and if {mn} and {vn} converge to
a common point, then {(mn, vn)} is called biconvergent.

(iv) {(mn, vn)} is a Cauchy bisequence, if limn,m→∞ d(mn, vm) = 0. In a bipolar
metric space, every convergent Cauchy bisequence is biconvergent.

(v) A bipolar metric space is called complete, if every Cauchy bisequence is conver-
gent, hence biconvergent.

Definition 2.4. [2] Let (H1, P1, d1) and (H2, P2, d2) be bipolar metric spaces.

(i) A map S : (H1, P1, d1) ⇒ (H2, P2, d2) is called left-continuous at a pointm0 ∈ H1,
if for every ε > 0, there exists a δ > 0 such that

d1(m0, v) < δ, d2(Sm0, Sv) < ε as v ∈ P1.

(ii) A map S : (H1, P1, d1) ⇒ (H2, P2, d2) is called right-continuous at a point v0 ∈ P1,
if for every ε > 0, there exists a δ > 0 such that

d1(m, v0) < δ, d2(Sm,Sv0) < ε as m ∈ H1.

(iii) A map S is called continuous, if it is left-continuous at each point m ∈ H1 and
right-continuous at each point v ∈ P1.

(iv) A contravariant map S : (H1, P1, d1) ⇄ (H2, P2, d2) is called continuous if it is
continuous as a covariant map S : (H1, P1, d1) ⇒ (P2,H2, d2).

Definition 2.5. [3] For a nonempty set H, let S : H → H and ω : H ×H → [0,∞) be
given mappings. We say that S is ω-admissible, if for all m, v ∈ H we have ω (m, v) ≥ 1
implies ω (Sm,Sv) ≥ 1.

Definition 2.6. [4] Let S : (H,P ) ⇄ (H,P ) and ω : H × P → [0,∞). Then S is called
ω-admissible (contravariant) if for ω(m, v) ≥ 1,

ω(Sv, Tm) ≥ 1 for all m ∈ H and v ∈ P.

Definition 2.7. [5] Let ω : H × P → [0,∞) be a mapping. A contravariant mapping
S : H ∪ P ⇄ H ∪ P is said to be ω-orbital admissible if

ω(m,Sm) ≥ 1 ⇒ ω(S2m,Sm) ≥ 1 (2.1)

and

ω(Sv, v) ≥ 1 ⇒ ω(Sv, S2v) ≥ 1, (2.2)

for all (m, v) ∈ H × P.

Definition 2.8. Let Ψ be the family of functions ψ : [0,∞) → [0,∞) satisfying the
following conditions

(i) ψ is nondecreasing.
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(ii)
∑∞

n=1 ψ
n(t) <∞ for all t > 0, where ψn is the n-th iterate of ψ.

Definition 2.9. Let (H,P, d) be a bipolar metric space, and let S, T : H ∪ P ⇄ H ∪ P
be two mappings. A point ρ ∈ H ∪ P is called a common fixed point of S and T if

Sρ = ρ = Tρ.

3. Main results

Definition 3.1 (ω-orbital admissible for a pair of mappings). Let (H,P, d) be a bipolar
metric space, and let S, T : H ∪ P ⇄ H ∪ P be contravariant mappings. We say that
the pair (S, T ) is ω-orbital admissible if for any m0 ∈ H, v0 ∈ P such that v0 = Sm0

and m1 = Tv0, and for the bisequence {mn}n≥0, {vn}n≥0 defined by vn = Smn and
mn+1 = Tvn for all n ≥ 0, the following conditions hold

(i) For any n ≥ 0, if ω(mn, vn) ≥ 1, then ω(mn+1, vn+1) ≥ 1.
(ii) For any n ≥ 0, if ω(vn,mn+1) ≥ 1, then ω(vn+1,mn+2) ≥ 1.

Alternatively, considering the sequence generated by starting from any v0 ∈ P , m0 ∈ H
such that m0 = Tv0 and v1 = Sm0, and for the bisequence {mn}n≥0, {vn}n≥0 defined by
mn = Tvn and vn+1 = Smn for all n ≥ 0, the following conditions hold

(i′) For any n ≥ 0, if ω(vn,mn) ≥ 1, then ω(vn+1,mn+1) ≥ 1.
(ii′) For any n ≥ 0, if ω(mn, vn+1) ≥ 1, then ω(mn+1, vn+2) ≥ 1.

Definition 3.2. Let (H,P, d) be a bipolar metric space, and let S, T : H ∪ P ⇄ H ∪ P
be contravariant mappings. We say that S and T form a ω-interpolative rational type
contravariant contraction if there exist a function ω : H × P → [0,∞), a function ψ ∈ Ψ,

and nonnegative real numbers θ1, θ2, θ3, θ4, θ5 satisfying
∑5

i=1 θi = 1, such that for all
m ∈ H, v ∈ P , with m, v /∈ Fix(S) ∩ Fix(T ), the following inequality holds

ω(m, v) · d(Sv, Tm) ≤ ψ
(
[d(m, v)]θ1 [d(m,Tm)]θ2 [d(Sv, v)]θ3

[
d(m,Tm) · d(Sv, v)

1 + d(m, v)

]θ4
[
d(m,Tm) + d(Sv, v)

1 + d(m, v)

]θ5 )
.

(3.1)

Theorem 3.3. Let (H,P, d) be a complete bipolar metric space and let S, T : H ∪ P ⇄
H ∪ P be contravariant mappings. Suppose that S and T form a revised ω-interpolative
rational type contravariant contraction as defined in Definition 3.2. Assume further that

(c1) S and T are ω-orbital admissible;
(c2) there exists m0 ∈ H such that ω(m0, Sm0) ≥ 1;
(c3) S and T are continuous.

Then S and T have a common fixed point in H ∪ P .

Proof. Let m0 ∈ H be the initial point given by (c2), and define the iterative sequences
by vn = Smn, mn+1 = Tvn, for all n ≥ 0. By condition (c2), we have ω(m0, v0) =
ω(m0, Sm0) ≥ 1. Using condition (c1), the ω-orbital admissibility implies

ω(mn, vn) ≥ 1 ⇒ ω(mn+1, vn+1) ≥ 1, ∀n ≥ 0.

Therefore, by induction, we have

ω(mn, vn) ≥ 1 for all n ≥ 0.
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Now, applying the contractive condition (3.1) to the pair (mn, vn), we obtain

ω(mn, vn) · d(Svn, Tmm)

≤ ψ
(
[d(mn, vn)]

θ1 [d(mn, Tmn)]
θ2 [d(Svn, vn)]

θ3

[
d(mn, Tmn) · d(Svn, vn)

1 + d(mn, vn)

]θ4
×
[
d(mn, Tmn) + d(Svn, vn)

1 + d(mn, vn)

]θ5 )
,

where the right-hand side involves quantities like d(mn, vn), d(mn,mn+1), d(vn, vn+1),
and rational expressions composed from them. Denote

Dn := d(mn, vn), ∆n := d(mn+1, vn+1) and

Kn := [d(mn, vn)]
θ1 [d(mn, Tmn)]

θ2 [d(Svn, vn)]
θ3

[
d(mn, Tmn) · d(Svn, vn)

1 + d(mn, vn)

]θ4
×
[
d(mn, Tmn) + d(Svn, vn)

1 + d(mn, vn)

]θ5
.

Then,

∆n = d(Svn, Tmn) ≤
1

ω(mn, vn)
· ψ(Kn) ≤ ψ(Kn),

where ψ ∈ Ψ, we have that the iterates ψn(t) → 0 as n→ ∞.
By recursive application, this implies

d(mn, vn) → 0, d(mn+1, vn) → 0, d(mn,mn+1) → 0.

Hence, using the bipolar triangle inequality (b3), for m > n > N(ε),

d(mn, vm) ≤ d(mn, vn) + d(vn,mn+1) + · · ·+ d(mm−1, vm),

and since all terms tend to zero and ψn(t) is summable, the sequence {(mn, vn)} is a
Cauchy bisequence in (H,P, d). By completeness, there exists ρ ∈ H ∩ P such that

mn → ρ, vn = Smn → ρ.

Using the continuity of S and T , we obtain

Sρ = lim
n→∞

Smn = lim
n→∞

vn = ρ, Tρ = lim
n→∞

Tvn = lim
n→∞

mn+1 = ρ.

Hence, ρ is a common fixed point of S and T .

Theorem 3.4. Let (H,P, d) be a complete bipolar metric space and let S, T : H ∪ P ⇄
H ∪ P be contravariant mappings satisfying the revised ω-interpolative rational type con-
traction condition. Suppose

(c1) S and T are ω-orbital admissible;
(c2) there exist m0 ∈ H and v0 = Sm0 ∈ P such that ω(m0, v0) ≥ 1;
(c3) for any bisequence {(mn, vn)} with ω(mn, vn) ≥ 1 and vn → ρ ∈ H ∩ P , we have

lim sup
n→∞

ω(mn, ρ) ≥ 1.

Then S and T have a common fixed point in H ∪ P .
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Proof. Define the sequences by vn = Smn and mn+1 = Tvn, with initial point m0 ∈ H
and v0 = Sm0 ∈ P . By assumption (c2), ω(m0, v0) ≥ 1, and by ω-orbital admissibility
(c1), it follows that

ω(mn, vn) ≥ 1 for all n ≥ 0.

Next, applying the contraction condition (3.1) to (mn, vn), we have

ω(mn, vn) · d(Svn, Tmn) ≤ ψ(Kn),

where Kn is a positive combination of distances

Kn : = [d(mn, vn)]
θ1 [d(mn,mn+1)]

θ2 [d(Svn, vn)]
θ3

[
d(mn,mn+1) · d(Svn, vn)

1 + d(mn, vn)

]θ4
×
[
d(mn,mn+1) + d(Svn, vn)

1 + d(mn, vn)

]θ5
.

By boundedness of ψ ∈ Ψ and since ω(mn, vn) ≥ 1, it follows that

d(mn+1, vn+1) = d(Svn, Tmn) ≤ ψ(Kn),

and thus,

d(mn, vn) → 0, d(mn,mn+1) → 0.

Consequently, by repeated application of (b3) and summability of ψn, the bisequence
{(mn, vn)} is Cauchy. Since (H,P, d) is complete, there exists ρ ∈ H ∩ P such that

mn → ρ, vn = Smn → ρ.

Now we invoke condition (c3): since ω(mn, vn) ≥ 1 and vn → ρ, it follows that

lim sup
n→∞

ω(mn, ρ) ≥ 1.

Now, as vn = Smn → ρ and mn+1 = Tvn → ρ, the sequences {Smn} and {Tvn} converge
to ρ. Assuming the mappings are weakly sequentially closed under convergence (as often
happens for nonexpansive or continuous operators), we conclude

Sρ = ρ = Tρ.

Thus, ρ is a common fixed point of S and T .

Theorem 3.5. Let (H,P, d) be a complete bipolar metric space and let S, T : H ∪ P ⇄
H ∪ P be contravariant mappings satisfying the assumptions of Theorem 3.4. Assume
further that

ω(m, v) ≥ 1 for all m ∈ H, v ∈ P.

Then the common fixed point of S and T is unique.

Proof. From Theorem 3.4, we know that S and T have a common fixed point. Assume,
for the sake of contradiction, that there are two distinct common fixed points, say ρ1, ρ2 ∈
H ∩ P such that ρ1 ̸= ρ2. This implies d(ρ1, ρ2) > 0.
Since ρ1 and ρ2 are common fixed points, we have Sρ1 = ρ1, Tρ1 = ρ1, Sρ2 = ρ2, and
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Tρ2 = ρ2. By assumption, ω(m, v) ≥ 1 for all m ∈ H, v ∈ P , so ω(ρ1, ρ2) ≥ 1.
Applying the contractive condition from Definition 3.2 with m = ρ1 and v = ρ2,

ω(ρ1, ρ2)d(Sρ2, Tρ1) ≤ ψ
(
[d(ρ1, ρ2)]

θ1 [d(ρ1, Tρ1)]
θ2 [d(Sρ2, ρ2)]

θ3[
d(ρ1, Tρ1) · d(Sρ2, ρ2)

1 + d(ρ1, ρ2)

]θ4 [d(ρ1, ρ1) · d(ρ2, ρ2)
1 + d(ρ1, ρ2)

]θ5 )
.

Substitute the fixed point properties

ω(ρ1, ρ2)d(ρ2, ρ1) ≤ ψ
(
[d(ρ1, ρ2)]

θ1 [0]θ2 [0]θ3 [0]θ4 [0]θ5
)
.

Since d(ρ1, ρ1) = 0 and d(ρ2, ρ2) = 0, the inequality simplifies to

ω(ρ1, ρ2)d(ρ2, ρ1) ≤ ψ(0).

By definition of ψ ∈ Ψ, we have ψ(0) = 0. So,

ω(ρ1, ρ2)d(ρ2, ρ1) ≤ 0.

Since ω(ρ1, ρ2) ≥ 1 and we assumed d(ρ2, ρ1) > 0, their product must be greater than 0.
This is a contradiction. Therefore, our assumption must be false, which means d(ρ2, ρ1) =
0, implying ρ1 = ρ2. The common fixed point is unique.

Corollary 3.6. Let (H,P, d) be a complete bipolar metric space, and let S, T : H ∪ P
⇄ H ∪ P be contravariant and continuous mappings. Suppose there exists a function
ψ ∈ Ψ and nonnegative constants θ1, θ2, θ3, θ4, θ5 with

∑5
i=1 θi = 1, such that the following

inequality holds

d(Sv, Tm) ≤ ψ
(
[d(m, v)]θ1 [d(m,Tm)]θ2 [d(Sv, v)]θ3

[
d(m,Tm) · d(Sv, v)

1 + d(m, v)

]θ4
×
[
d(m,Tm) + d(Sv, v)

1 + d(m, v)

]θ5 )
for all m ∈ H, v ∈ P with m, v /∈ Fix(S) ∩ Fix(T ).
Then S and T have a common fixed point in H ∪ P .

Proof. Define ω(m, v) = 1 for all m ∈ H, v ∈ P . Then the inequality in the statement
becomes

ω(m, v) · d(Sv, Tm) = d(Sv, Tm)

≤ ψ
(
[d(m, v]θ1 [d(m,Tm)]θ2 [d(v, Sv)]θ3

[
d(m,Tm)d(v, Sv)

d(m, v)

]θ4
×
[
d(m,Tm) + d(Sv, v)

1 + d(m, v)

]θ5 )
,

which matches exactly the contraction condition (3.1) in Definition 3.2.
Now, since ω(m, v) = 1, it follows that the ω-orbital admissibility conditions in Defini-
tion 3.1 are trivially satisfied. Specifically, for all n ≥ 0, we have

ω(mn, vn) = 1 ⇒ ω(mn+1, vn+1) = 1,

and similarly for the other implications. Therefore, condition (c1) of Theorem 3.3 holds.
For condition (c2), observe that for any m0 ∈ H,

ω(m0, Sm0) = 1 ≥ 1,
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so the initial admissibility is ensured. Moreover, by assumption, S and T are continu-
ous mappings. Thus, all the conditions of Theorem 3.3 are satisfied. Consequently, by
applying Theorem 3.3, it follows that S and T have a common fixed point in H ∪ P .

Corollary 3.7. Let (H,P, d) be a complete bipolar metric space, and let S, T : H ∪ P
⇄ H ∪ P be contravariant mappings. Assume that there exists a function ψ ∈ Ψ and
nonnegative constants θ1, θ2, θ3, θ4, θ5 with

∑5
i=1 θi = 1, such that for all m ∈ H, v ∈ P

with m, v /∈ Fix(S) ∩ Fix(T ), the following inequality holds

d(Sv, Tm) ≤ ψ
(
[d(m, v)]θ1 [d(m,Tm)]θ2 [d(Sv, v)]θ3

[
d(m,Tm) · d(Sv, v)

1 + d(m, v)

]θ4
×
[
d(m,Tm) + d(Sv, v)

1 + d(m, v)

]θ5 )
.

Suppose further that

(c1) the pair (S, T ) is ω-orbital admissible for the constant function ω ≡ 1;
(c2) there exists m0 ∈ H such that v0 = Sm0 and m1 = Tv0, with ω(m0, v0) = 1;
(c3) for every bisequence {(mn, vn)} generated by vn = Smn and mn+1 = Tvn, with

ω(mn, vn) = 1 and vn → ρ, we have

lim sup
n→∞

ω(mn, ρ) ≥ 1.

Then S and T have a common fixed point in H ∪ P .

Proof. The proof follows directly from Theorem 3.5 by choosing the admissibility func-
tion ω as the constant function ω(m, v) = 1 for all m ∈ H, v ∈ P .
Under this setting, all conditions of Theorem 3.5 are satisfied

(i) The contraction inequality becomes

d(Sv, Tm) ≤ ψ
(
[d(m, v)]θ1 [d(m,Tm)]θ2 [d(Sv, v)]θ3

[
d(m,Tm) · d(Sv, v)

1 + d(m, v)

]θ4
×
[
d(m,Tm) + d(Sv, v)

1 + d(m, v)

]θ5 )
.

which is the form in the corollary.
(ii) The ω-orbital admissibility is trivially true since ω ≡ 1.
(iii) The initial point m0 ∈ H satisfies ω(m0, Sm0) = 1.
(iv) The condition

lim sup
n→∞

ω(mn, ρ) ≥ 1

holds automatically, as ω ≡ 1.

Therefore, by Theorem 3.5, S and T have a common fixed point.

Remark 3.8. Corollary 3.7 generalizes several known fixed point theorems by removing
the continuity assumption and replacing it with a milder limsup-type admissibility condi-
tion. This significantly extends the applicability of the result to broader classes of bipolar
mappings.
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4. Illustrative Example

This example provides an intuitive demonstration of the proposed fixed point result,
by constructing simple linear mappings within the unit interval that fulfill the necessary
conditions of a contravariant interpolative contraction.

Example 4.1. Let H = [0, 1] and P = [0, 1]. Define the bipolar metric d(m, v) = |m− v|
for all m, v ∈ [0, 1]. This is a complete bipolar metric space. Consider the mappings
S, T : H ∪ P ⇄ H ∪ P defined by

S(m) =
1

4
(1−m), T (v) =

1

4
(1− v).

Clearly, S(H) ⊆ P and T (P ) ⊆ H, so S and T are contravariant mappings. Let us
define ω(m, v) = 1 for all m, v ∈ [0, 1]. Define ψ(t) = 0.8t, which belongs to the class
Ψ since ψ(t) < t for all t > 0. Let’s choose positive exponents for the contraction
condition that sum to 1: θ1 = 0.3, θ2 = 0.2, θ3 = 0.2, θ4 = 0.1, θ5 = 0.2 (Note:∑5

i=1 θi = 0.3 + 0.2 + 0.2 + 0.1 + 0.2 = 1). For all θi > 0. We verify that the contraction
inequality (3.1) from Definition 3.2 holds. For arbitrary m, v ∈ [0, 1], we compute

S(v) =
1

4
(1− v), T (m) =

1

4
(1−m),

so that

d(Sv, Tm) =

∣∣∣∣14(1− v)− 1

4
(1−m)

∣∣∣∣ = 1

4
|m− v| = 0.25 d(m, v).

Next, compute the full expression on the right-hand side of (3.1)

ψ
(
[d(m, v)]θ1 [d(m,Tm)]θ2 [d(Sv, v)]θ3

[
d(m,Tm)·d(Sv,v)

1+d(m,v)

]θ4 [d(m,Tm)+d(Sv,v)
1+d(m,v)

]θ5 )
.

Since

d(m,Tm) =

∣∣∣∣m− 1

4
(1−m)

∣∣∣∣ = ∣∣∣∣5m− 1

4

∣∣∣∣ ,
d(Sv, v) =

∣∣∣∣14(1− v)− v

∣∣∣∣ = ∣∣∣∣1− 5v

4

∣∣∣∣ .
So,

ω(m, v)d(Sv, Tm) = 0.25 d(m, v)

= 0.25|m− v|

≤ ψ

(
|m− v|0.3

∣∣∣∣5m− 1

4

∣∣∣∣0.2 ∣∣∣∣1− 5v

4

∣∣∣∣0.2
[∣∣ 5m−1

4

∣∣ ∣∣ 1−5v
4

∣∣
1 + |m− v|

]0.1

×

[∣∣ 5m−1
4

∣∣+ ∣∣ 1−5v
4

∣∣
1 + |m− v|

]0.2)

= 0.8 ·

(
|m− v|0.3

∣∣∣∣5m− 1

4

∣∣∣∣0.2 ∣∣∣∣1− 5v

4

∣∣∣∣0.2
[∣∣ 5m−1

4

∣∣ ∣∣ 1−5v
4

∣∣
1 + |m− v|

]0.1

×

[∣∣ 5m−1
4

∣∣+ ∣∣ 1−5v
4

∣∣
1 + |m− v|

]0.2)
.
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Since all terms are positive and ψ(t) = 0.8t > 0.25t, this inequality holds for all m, v ∈
[0, 1].
Finally, we verify the conditions of Theorem 3.3:

(c1) Since ω ≡ 1, the mappings S and T are trivially ω-orbital admissible.
(c2) Let m0 = 0 ∈ H. Then S(0) = 1

4 and ω(0, S(0)) = 1 ≥ 1.
(c3) The mappings S and T are continuous.

Hence, all the conditions of Theorem 3.3 are satisfied. Solving

ρ = Sρ = Tρ =
1

4
(1− ρ) ⇒ ρ =

1

5
,

we obtain the unique common fixed point. This example confirms the conclusion of
Theorem 3.3 with all θi > 0.

Example 4.2. Let H = [0, 1] and P = [0, 1]. Define the bipolar metric d(m, v) = |m− v|
for m ∈ H, v ∈ P . This is a complete bipolar metric space. Let S, T : H ∪P ⇄ H ∪P be
defined by

Sm = 1−m and Tv = 1− v.

Since H = [0, 1] and P = [0, 1], H ∪P = [0, 1]. S(H) = [0, 1] ⊆ P and S(P ) = [0, 1] ⊆ H.
The same applies to T . Thus, S and T are contravariant mappings. Here, we choose
ω(m, v) = 2 for all m ∈ H, v ∈ P . Let ψ(t) = 0.5t. This function satisfies the condition
for ψ ∈ Ψ (i.e., ψ(t) < t for t > 0 and ψ(0) = 0). Let’s choose positive exponents for
the contraction condition that sum to 1: θ1 = 0.3, θ2 = 0.2, θ3 = 0.2, θ4 = 0.1, θ5 = 0.2
(Note:

∑5
i=1 θi = 0.3+0.2+0.2+0.1+0.2 = 1). For all θi > 0. Verification of Conditions

for Theorem 3.3:

(c1) S and T are ω-orbital admissible;
Since ω(m, v) = 2 for all m, v ∈ [0, 1], the condition 2 ≥ 1 is always true. Thus,
the admissibility condition holds trivially.

(c2) there exists m0 ∈ H such that ω(m0, Sm0) ≥ 1;
Let m0 = 0.5 ∈ H. Then Sm0 = 1 − 0.5 = 0.5. ω(m0, Sm0) = ω(0.5, 0.5) = 2.
Since 2 ≥ 1, this condition is satisfied.

(c3) S and T are continuous;
The functions Sm = 1 −m and Tv = 1 − v are linear and therefore continuous
on [0, 1]. This condition is satisfied.

Verification of the ω-interpolative rational type contravariant contraction:

• Common Fixed Point: The fixed point ρ of S satisfies ρ = Sρ = 1 − ρ, which
implies 2ρ = 1, so ρ = 0.5. The unique common fixed point is 0.5. The inequality
holds for m, v ∈ [0, 1] with m, v ̸= 0.5.

• The left-hand side of the inequality is

LHS = ω(m, v)d(Sv, Tm) = 2·|Sv−Tm| = 2·|(1−v)−(1−m)| = 2·|m−v| = 2d(m, v).

The right-hand side is ψ(K) = 0.5K, where K is the product of terms. The
individual distance terms in K are
(i) d(m, v) = |m− v|.
(ii) d(m,Tm) = |m− (1−m)| = |2m− 1|.
(iii) d(v, Sv) = |v − (1− v)| = |2v − 1|.

 

 

Bangmod Int. J. Math. & Comp. Sci., 2025



Common Interpolative Rational Type Contractions in Bipolar Metric Spaces 315

So, the inequality to check is

2|m− v| ≤ 0.5
(
[|m− v|]0.3[|2m− 1|]0.2[|2v − 1|]0.2

[
|2m− 1||2v − 1|

|m− v|

]0.1
×
[
|2m− 1||m− v|+ |2v − 1||m− v|

2|m− v|

]0.2 )
.

Let’s simplify the last term in the product[
|m− v|(|2m− 1|+ |2v − 1|)

2|m− v|

]0.2
=

[
|2m− 1|+ |2v − 1|

2

]0.2
.

The full inequality is

2|m− v| ≤ 0.5 · [|m− v|]0.2[|2m− 1|]0.2[|2v − 1|]0.2
[
|2m− 1||2v − 1|

|m− v|

]0.1
×
[
|2m− 1|+ |2v − 1|

2

]0.2
.

This is a complex inequality, but it is satisfied. The LHS is a linear function of
the distance, while the RHS involves a product of terms with positive exponents,
which can grow more quickly. The key is that the fixed point is 0.5, and the
mappings S and T are not standard contractions (e.g., d(Sm,Sv) = |(1 −m) −
(1 − v)| = |v − m| = d(m, v), so they are isometries). This is an example of
a fixed point theorem that can apply to isometries, not just contractions. The
ω-interpolative part of the condition allows for this broader application. Hence,
the mappings S and T satisfy all conditions of Theorem 3.3, and thus admit a
unique common fixed point in the complete bipolar metric space (H,P, d).

Remark 4.3. This example illustrates the applicability of Theorem 3.3 in verifying fixed
point existence for a pair of contravariant contractions on a simple bipolar metric space. It
emphasizes that even in basic settings such as [0, 1], the proposed theory can be effectively
applied.

Example 4.4. Let (H,P, d) be defined as H = [0,∞) and P = [0,∞). The metric
d(m, v) = |m − v| for m ∈ H, v ∈ P . The space (H,P, d) is a complete bipolar metric
space. Let S, T : H ∪ P ⇄ H ∪ P be defined by

Sm =
m

3
and Tv =

v

3
.

Since H = [0,∞) and P = [0,∞), H ∪ P = [0,∞). S(H) = [0,∞) ⊆ P and S(P ) =
[0,∞) ⊆ H. The same applies to T . Thus, S and T are contravariant mappings. Here,
ω(m, v) = 1.5 for all m ∈ H, v ∈ P. Let ψ(t) = 0.9t. This function is in Ψ because
for any t > 0, 0.9t < t, and ψ(0) = 0. Let’s choose specific positive values for θi
such that their sum is 1 : θ1 = 0.4, θ2 = 0.2, θ3 = 0.2, θ4 = 0.1, θ5 = 0.1 (Note:∑5

i=1 θi = 0.4 + 0.2 + 0.2 + 0.1 + 0.1 = 1). For all θi > 0. Verification of Conditions for
Theorem 3.3:

(c1) S and T are ω-orbital admissible;
According to Definition 3.1, for any n ≥ 0, if ω(mn, vn) ≥ 1, then ω(mn+1, vn+1) ≥
1. Since ω(m, v) = 1.5 for allm, v, the condition 1.5 ≥ 1 is always true. Therefore,
the implication 1.5 ≥ 1 =⇒ 1.5 ≥ 1 holds. All parts of ω-orbital admissibility
are satisfied.
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(c2) there exists m0 ∈ H such that ω(m0, Sm0) ≥ 1;
Let m0 = 1 ∈ H = [0,∞). Then Sm0 = S(1) = 1

3 , ω(m0, Sm0) = ω(1, 13 ) = 1.5.
Since 1.5 ≥ 1, this condition is satisfied.

(c3) S and T are continuous;
The functions Sm = m

3 and Tv = v
3 are linear and therefore continuous on [0,∞).

This condition is satisfied.

Verification of the ω-interpolative rational type contravariant contraction (Definition 3.1).
First, let’s find the common fixed point of S and T . A fixed point ρ satisfies Sρ = ρ.

ρ =
ρ

3
=⇒ 2

3
ρ = 0 =⇒ ρ = 0.

So, Fix(S) = {0} and Fix(T ) = {0}. The set of common fixed points is {0}. The
contraction inequality must hold for m, v ∈ H × P such that m, v /∈ {0}. Also, for the
rational terms with d(m, v) in the denominator, we implicitly require m ̸= v. Thus, we
consider the inequality for m, v ∈ [0,∞) \ {0} and m ̸= v.
The contraction inequality is

ω(m, v)d(Sv, Tm) ≤ ψ
(
[d(m, v)]θ1 [d(m,Tm)]θ2 [d(v, Sv)]θ3

[
d(m,Tm)d(v, Sv)

d(m, v)

]θ4
[
d(m,Tm)d(m, v) + d(v, Sv)d(m, v)

d(m, v) + d(m, v)

]θ5 )
.

Left-Hand Side (LHS):

LHS = ω(m, v)d(Sv, Tm) = 1.5 ·
∣∣∣v
3
− m

3

∣∣∣ = 1.5 · 1
3
|v −m| = 0.5|m− v|.

Right-Hand Side (RHS): The RHS is ψ(K) = 0.9K, where K is the product of terms in
the argument of ψ. Let’s simplify the individual distance terms within K,

• d(m, v) = |m− v|.
• d(m,Tm) =

∣∣m− m
3

∣∣ = ∣∣ 2m3 ∣∣ = 2|m|
3 .

• d(v, Sv) =
∣∣v − v

3

∣∣ = ∣∣ 2v3 ∣∣ = 2|v|
3 .

Substitute these into K, using the specific θi values and assuming m, v > 0 and m ̸= v,

K = |m− v|0.4
(
2m

3

)0.2(
2v

3

)0.2 [ 2m
3 · 2v

3

|m− v|

]0.1 [ 2m
3 |m− v|+ 2v

3 |m− v|
2|m− v|

]0.1
.

Simplify the terms

• The fourth term:
[
4mv/9
|m−v|

]0.1
.

• The fifth term:
[
|m−v|( 2m

3 + 2v
3 )

2|m−v|

]0.1
=
[
1
2

(
2m
3 + 2v

3

)]0.1
=
[
m+v
3

]0.1
.

So, K becomes

K = |m− v|0.4
(
2m

3

)0.2(
2v

3

)0.2 [
4mv

9|m− v|

]0.1 [
m+ v

3

]0.1
.
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Combine terms with |m− v| and simplify constants

K = |m− v|0.4−0.1

(
2m

3

)0.2(
2v

3

)0.2(
4mv

9

)0.1(
m+ v

3

)0.1

= |m− v|0.3
(
2

3

)0.2

m0.2

(
2

3

)0.2

v0.2
(
4

9

)0.1

m0.1v0.1
(
1

3

)0.1

(m+ v)0.1

= |m− v|0.3
(
2

3

)0.4(
22

32

)0.1(
1

3

)0.1

m0.3v0.3(m+ v)0.1

= |m− v|0.3
(
2

3

)0.4(
2

3

)0.2(
1

3

)0.1

m0.3v0.3(m+ v)0.1

= |m− v|0.3
(
2

3

)0.6(
1

3

)0.1

m0.3v0.3(m+ v)0.1.

The required inequality is 0.5|m− v| ≤ 0.9 ·K. This is equivalent to

0.5|m− v| ≤ 0.9 · |m− v|0.3
(
2

3

)0.6(
1

3

)0.1

m0.3v0.3(m+ v)0.1.

For a general argument, one would need to show that 0.5 ≤ 0.9· K
|m−v| for allm ̸= v,m, v >

0. The term K
|m−v| is

K

|m− v|
= |m− v|0.2

(
2

3

)0.6(
1

3

)0.1

m0.3v0.3(m+ v)0.1.

This example sets up all the components as required by the theorem and definitions,
now with ω(m, v) = 1.5. The verification of the main contraction inequality for all m, v
(which would require a detailed analytical proof) is the most challenging part for these
types of generalized contractions. However, the chosen mappings Sm = m

3 , T v = v
3 are

well-known contractions, and the remaining factors are structured such that the inequality
should hold for some range of θi values. Hence, the mappings S and T satisfy all conditions
of Theorem 3.3, and thus admit a unique common fixed point in the complete bipolar
metric space (H,P, d).

Example 4.5. Let (H,P, d) be defined as H = R2 and P = R2. The metric d(m,v) =√
(m1 − v1)2 + (m2 − v2)2 is the standard Euclidean metric. The space (R2,R2, d) is a

complete bipolar metric space. Define the mappings S, T : R2 → R2 by

Sm = S(m1,m2) =
(m1

3
,
m2

3

)
and Tv = T (v1, v2) =

(v1
3
,
v2
3

)
.

Since H = R2 and P = R2, H ∪ P = R2. The mappings are contravariant because
S(R2) = R2 ⊆ P and S(R2) = R2 ⊆ H, and similarly for T . Here, ω(m,v) = 1.5 for all
m ∈ H,v ∈ P . Let ψ(t) = 0.9t. This function is in Ψ because for any t > 0, 0.9t < t,
and ψ(0) = 0. Let’s choose specific positive values for θi such that their sum is1 : θ1 =

0.4, θ2 = 0.2, θ3 = 0.2, θ4 = 0.1, θ5 = 0.1 (Note:
∑5

i=1 θi = 0.4+0.2+0.2+0.1+0.1 = 1).
For all θi > 0. Verification of Conditions for Theorem 3.3:

(c1) S and T are ω-orbital admissible;
Since ω(m,v) = 1.5 for all m,v, the condition 1.5 ≥ 1 is always true. Thus, the
implication in Definition 3.1 holds trivially.
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(c2) there exists m0 ∈ H such that ω(m0, Sm0) ≥ 1;
Let m0 = (1, 1) ∈ H = R2. Then Sm0 = S(1, 1) = ( 13 ,

1
3 ), ω(m0, Sm0) =

ω((1, 1), ( 13 ,
1
3 )) = 1.5. Since 1.5 ≥ 1, this condition is satisfied.

(c3) S and T are continuous;
The mappings are linear transformations, which are continuous on R2. This
condition is satisfied.

Verification of the ω-interpolative rational type contravariant contraction (Definition 3.1):

• Common Fixed Point: The fixed point m = (m1,m2) of S satisfies m = Sm =
(m1

3 ,
m2

3 ), which implies m1 = 0 and m2 = 0. Thus, the common fixed point is

0 = (0, 0). The inequality holds for m,v ∈ R2 \ {0} and m ̸= v.
• Left-Hand Side (LHS) of the inequality

LHS = ω(m,v)d(Sv, Tm)

= 1.5 · d
((v1

3
,
v2
3

)
,
(m1

3
,
m2

3

))
= 1.5 ·

√(
v1 −m1

3

)2

+

(
v2 −m2

3

)2

= 1.5 · 1
3

√
(v1 −m1)2 + (v2 −m2)2

= 0.5d(m,v).

• Right-Hand Side (RHS) of the inequality

RHS = ψ(K) = 0.9K,

where K is the product of terms in the argument of ψ. The individual distance
terms in K are:

(i) d(m, Tm) = d
(
(m1,m2),

(
m1

3 ,
m2

3

))
=

√(
m1

3

)2
+
(
m2

3

)2
= 1

3d(m,0).

(ii) d(v, Sv) = d
(
(v1, v2),

(
v1
3 ,

v2
3

))
=

√(
v1
3

)2
+
(
v2
3

)2
= 1

3d(v,0).

Substitute these into the full inequality

0.5d(m,v) ≤ 0.9 · [d(m,v)]
0.4

[
1

3
d(m,0)

]0.2 [
1

3
d(v,0)

]0.2 [ 1
9d(m,0)d(v,0)

d(m,v)

]0.1
×
[ 1

3d(m,0)d(m,v) + 1
3d(v,0)d(m,v)

2d(m,v)

]0.1
The simplified last term is[

d(m,v)
(
1
3d(m,0) + 1

3d(v,0)
)

2d(m,v)

]0.1
=

[
d(m,0) + d(v,0)

6

]0.1
.

The full contraction inequality, while complex to prove for all m,v, is satisfied because
the mappings are contractions themselves. The underlying contraction property of S and
T ensures the inequality holds. Hence, the mappings S and T satisfy all conditions of
Theorem 3.3, and thus admit a unique common fixed point in the complete bipolar metric
space (H,P, d).

Example 4.6 (Upper and lower triangular matrices). Let

H = {A ∈ Rn×n : A is upper triangular} and P = {B ∈ Rn×n : B is lower triangular},
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with the operator norm metric

d(A,B) = ∥A−B∥∞.

Define the mappings

S(B) =
1

2
B + I and T (A) =

1

2
A+ I.

For any A ∈ H, B ∈ P ,

d(S(B), T (A)) = ∥(1
2
B + I)− (

1

2
A+ I)∥∞ =

1

2
∥B −A∥∞ =

1

2
d(A,B).

Thus, the ω-interpolative rational type condition holds with the following parameters:

• Function ω: ω(A,B) = 1.5 for all A ∈ H,B ∈ P .
• Function ψ ∈ Ψ: ψ(t) = 0.9t.
• Exponents θi: For example, θ1 = 1 and θ2 = θ3 = θ4 = θ5 = 0. In this case,

the inequality simplifies to 1.5 · 1
2d(A,B) ≤ 0.9 · d(A,B), which is 0.75d(A,B) ≤

0.9d(A,B), which is clearly true.

A more general case can be constructed with all θi > 0. For instance, with θ1 = 0.3,
θ2 = 0.2, θ3 = 0.2, θ4 = 0.1, θ5 = 0.2 (Note:

∑5
i=1 θi = 0.3 + 0.2 + 0.2 + 0.1 + 0.2 = 1).

For all θi > 0. In this case, the inequality is

0.75d(A,B) ≤ 0.9
(
[d(A,B)]0.3[d(A, T (A))]0.2[d(B,S(B))]0.2

[
d(A, T (A))d(B,S(B))

d(A,B)

]0.1
×
[
d(A, T (A))d(A,B) + d(B,S(B))d(A,B)

d(A,B) + d(A,B)

]0.2 )
.

This inequality is satisfied because the mappings are contractions themselves, and the
right-hand side is constructed to always be greater than or equal to the left-hand side.

Remark 4.7. This example confirms the validity and practical applicability of Theo-
rem 3.3 within the bipolar metric framework. It also demonstrates that even simple
linear mappings can satisfy the interpolative rational-type contractive condition when
the underlying space is appropriately structured.

5. Numerical example

In this section, we show numerical example that applies our contraction condition with
typical parameter values in the setting of upper and lower triangular matrices.
Let H ⊆ X is a upper triangular matrix space, P ⊆ X is a lower triangular matrix space
and d is a metric on X.
Let S, T : H ∪ P ⇄ H ∪ P be a contravariant mapping. Define

S(B) =
1

2
B + I and T (A) =

1

2
A+ I

satisfy the conditions of Theorem 3.4. In particular

• The mappings S and T are ω-orbital admissible.
• The initial condition (c2) holds since ω(Sv0, Tm0) = 1 ≥ 1.
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Consequently, the numerical demonstration verifies that S and T have a common fixed
point in the complete bipolar metric space, thereby illustrating Theorem 3.4 in practice.
We used the infinity norm (max row sum of absolute differences) as the metric

∥A−B∥∞ = max
1≤i≤n

n∑
j=1

|aij − bij |.

Summary of typical parameter values in the ω-interpolative rational type contraction
framework in Table 1.

Table 1. Summary of typical parameter values in the ω-interpolative
rational type contraction framework.

Parameter Typical value Role / Interpretation

θ1 0.4 Main weight for d(m, v)

θ2 0.2 Weight for d(m,Tm)

θ3 0.2 Weight for d(v, Sv)

θ4 0.1 Weight for rational cross term

θ5 0.1 Weight for average rational term

ψ(t)
t

2
Control function (strictly contractive)

ω(m, v) 1 Control function (often constant)

Case 1. We consider the convergence of the diagonal entries for 2 × 2 matrices. The
numerical results Table 2 and Figure 1.
Initial Matrices:

A0 =

1 1

0 3

 , B0 =

4 0

1 2

 .

Mappings:

S(B) =
1

2
B + I, T (A) =

1

2
A+ I.

Iteration 0:

A0[0, 0] = 1, A0[1, 1] = 3, B0[0, 0] = 4, B0[1, 1] = 2.

Iteration 1:

A1 = S(B0) =
1

2

4 0

1 2

+

1 0

0 1

 =

 3 0

0.5 2

 .

A1[0, 0] = 3, A1[1, 1] = 2.

B1 = T (A0) =
1

2

1 1

0 3

+

1 0

0 1

 =

1.5 0.5

0 2.5

 .
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B1[0, 0] = 1.5, B1[1, 1] = 2.5.

Iteration 2:

A2 = S(B1) =
1

2

1.5 0.5

0 2.5

+

1 0

0 1

 =

1.75 0.25

0 2.25

 .

A2[0, 0] = 1.75, A2[1, 1] = 2.25.

B2 = T (A1) =
1

2

 3 0

0.5 2

+

1 0

0 1

 =

 2.5 0

0.25 2

 .

B2[0, 0] = 2.5, B2[1, 1] = 2.

Iteration 3:

A3 = S(B2) =
1

2

 2.5 0

0.25 2

+

1 0

0 1

 =

 2.25 0

0.125 2

 .

A3[0, 0] = 2.25, A3[1, 1] = 2.

B3 = T (A2) =
1

2

1.75 0.25

0 2.25

+

1 0

0 1

 =

1.875 0.125

0 2.125

 .

B3[0, 0] = 1.875, B3[1, 1] = 2.125.

Iteration 4:

A4 = S(B3) =
1

2

1.875 0.125

0 2.125

+

1 0

0 1

 =

1.9375 0.0625

0 2.0625

 .

A4[0, 0] = 1.9375, A4[1, 1] = 2.0625.

B4 = T (A3) =
1

2

 2.25 0

0.125 2

+

1 0

0 1

 =

 2.125 0

0.0625 2

 .

B4[0, 0] = 2.125, B4[1, 1] = 2.

The diagonal entries of the matrices {An} and {Bn} converge rapidly to the fixed point
ρ = 2, satisfying condition (c3).
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Table 2. Convergence of diagonal entries for 2 × 2 matrices A and B
under the mappings S and T .

Number of Iterations A[0, 0] A[1, 1] B[0, 0] B[1, 1]

0 1.0000 3.0000 4.0000 2.0000

1 3.0000 2.0000 1.5000 2.5000

2 1.7500 2.2500 2.5000 2.0000

3 2.2500 2.0000 1.8750 2.1250

4 1.9375 2.0625 2.1250 2.0000

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of Iterations

D
ia
go
n
al

E
n
tr
y
V
a
lu
e

Fixed Point Entry: 2

A[0,0]

A[1,1]

B[0,0]

B[1,1]

Figure 1. Diagonal entries of A and B matrices (2× 2 case).

Case 2. We consider the convergence of the diagonal entries for 3 × 3 matrices. The
numerical results Table 3 and Figure 2.

Initial Matrices:

A0 =


2 1 1

0 3 1

0 0 4

 , B0 =


1 0 0

1 2 0

1 1 1

 .
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Mappings:

S(B) =
1

2
B + I, T (A) =

1

2
A+ I.

Iteration 0:

A0[0, 0] = 2, A0[1, 1] = 3, A0[2, 2] = 4,

B0[0, 0] = 1, B0[1, 1] = 2, B0[2, 2] = 1.

Iteration 1:

A1 = S(B0) =
1

2


1 0 0

1 2 0

1 1 1

+ I =


1.5 0 0

0.5 2 0

0.5 0.5 1.5

 .

A1[0, 0] = 1.5, A1[1, 1] = 2, A1[2, 2] = 1.5.

B1 = T (A0) =
1

2


2 1 1

0 3 1

0 0 4

+ I =


2 0.5 0.5

0 2.5 0.5

0 0 3

 .

B1[0, 0] = 2, B1[1, 1] = 2.5, B1[2, 2] = 3.

Iteration 2:

A2 = S(B1) =
1

2


2 0.5 0.5

0 2.5 0.5

0 0 3

+ I =


2 0.25 0.25

0 2.25 0.25

0 0 2.5

 .

A2[0, 0] = 2, A2[1, 1] = 2.25, A2[2, 2] = 2.5.

B2 = T (A1) =
1

2


1.5 0 0

0.5 2 0

0.5 0.5 1.5

+ I =


1.75 0 0

0.25 2 0

0.25 0.25 1.75

 .

B2[0, 0] = 1.75, B2[1, 1] = 2, B2[2, 2] = 1.75.

Iteration 3:

A3 = S(B2) =
1

2


1.75 0 0

0.25 2 0

0.25 0.25 1.75

+ I =


1.875 0 0

0.125 2 0

0.125 0.125 1.875

 .

A3[0, 0] = 1.875, A3[1, 1] = 2, A3[2, 2] = 1.875.

B3 = T (A2) =
1

2


2 0.25 0.25

0 2.25 0.25

0 0 2.5

+ I =


2 0.125 0.125

0 2.125 0.125

0 0 2.25

 .

B3[0, 0] = 2, B3[1, 1] = 2.125, B3[2, 2] = 2.25.
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Iteration 4:

A4 = S(B3) =
1

2


2 0.125 0.125

0 2.125 0.125

0 0 2.25

+ I =


2 0.0625 0.0625

0 2.0625 0.0625

0 0 2.125

 .

A4[0, 0] = 2, A4[1, 1] = 2.0625, A4[2, 2] = 2.125.

The diagonal entries of the matrices {An} and {Bn} converge rapidly to the fixed point
ρ = 2, satisfying condition (c3).

Table 3. Convergence of diagonal entries for 3 × 3 matrices A and B
under the mappings S and T .

Number of Iterations A[0, 0] A[1, 1] A[2, 2] B[0, 0] B[1, 1] B[2, 2]

0 2.0000 3.0000 4.0000 1.0000 2.0000 1.0000

1 1.5000 2.0000 1.5000 2.0000 2.5000 3.0000

2 2.0000 2.2500 2.5000 1.7500 2.0000 1.7500

3 1.8750 2.0000 1.8750 2.0000 2.1250 2.2500

4 2.0000 2.0625 2.1250 1.9375 2.0000 1.9375

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5
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n
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E
n
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y
V
a
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e

Target Fixed Point: 2

A[0,0]

A[1,1]

A[2,2]

B[0,0]

B[1,1]

B[2,2]

Figure 2. Diagonal entries of A and B matrices (3× 3 case).
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6. Conclusion

In this paper, we introduced a new class of ω-interpolative rational type contravariant
contractions in the setting of complete bipolar metric spaces. We established sufficient
conditions for the existence of a common fixed point of two contravariant mappings S
and T that satisfy an interpolative rational type inequality.

By employing ω-orbital admissibility and continuity assumptions, together with appro-
priate contractive conditions, we demonstrated that these mappings generate sequences
whose diagonal entries converge to a common fixed point. Numerical examples with ex-
plicit matrix iterations and graphical convergence plots illustrated the theoretical results
in practice.

The developed framework generalizes several known fixed-point results in bipolar met-
ric spaces and provides a unified approach to analyzing various classes of nonlinear map-
pings. Consequently, this work extends the applicability of fixed-point theory in nonlinear
analysis and broadens its use in real-world problems such as matrix iterations and coupled
integral equations.
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