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1. Introduction

Variational inequality problem (VIP) have become a central tool in both pure and
applied sciences, offering a unified framework for a wide variety of problems. It is well
known that many problems in society and science can be formulated using variational
inequality models, which play an important role in nonlinear optimization theory and its
applications. Recently, VIP have attracted significant attention from researchers inter-
ested not only in theoretical developments but also in numerical approaches to solving
such problems.

The variational inequality problem can be stated as follows:

Find z∗ ∈ C such that ⟨Mz∗, z − z∗⟩ ≥ 0, ∀z ∈ C, (1.1)

where C is a nonempty, closed, and convex subset of a real Hilbert space H with inner
product ⟨·, ·⟩ and norm ∥ · ∥, and M : H → H is a nonlinear mapping. The solution set
is denoted by Sol(C,M).

It is a well-established fact that a point z∗ constitutes a solution to the VIP in equation
(1.1) if and only if it resolves the associated fixed-point equation:

z∗ = PC(z
∗ − τMz∗), ∀ tau > 0, (1.2)

where PC is the projection operator from H onto C.
One of the projection methods for solving the problem described in (1.1) is the extra-

gradient method, which was introduced by Korpelevich [1] and independently by Antipin
[2]. The extragradient method is formulated as follows:{

sn = PC(wn − τnMwn),

zn+1 = PC(sn − τnMsn),
(1.3)

where τn ∈ (0, 1/L) and M : C → H be monotone and L-Lipschitz continuous op-
erator. Recently, the extragradient method has produced conclusive results under the
assumptions of monotonicity and Lipschitz continuity of the mappings (see, e.g., [4–6]).

In 2021, Tian and Xu [7] introduced the following inertial projection and contraction
method to circumvent this obstacle.



w0, w1 ∈ H,

sn = wn + ζn(wn − wn−1),

tn = PC(sn − τnMsn),

d(sn, tn) = (sn − tn)− τn(Msn −Mtn),

vn = sn − ληnd(sn, tn),

sn+1 = (1− αn − βn)sn + βnvn, ∀n ≥ 1,

(1.4)

where {αn}, {βn} and {ζn} are control sequences in (0, 1), λ ∈ (0, 2) and

ηn =


φ(sn, tn)

∥d(sn, tn)∥2
, if d(sn, tn) ̸= 0,

0, if d(sn, tn) ̸= 0,
.

where φ(sn, tn) = ⟨sn − tn, d(sn, tn)⟩. The step size τn is chosen to be the largest τ ∈
{γ, γl, γl2, . . . } such that
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τ∥Msn −Mtn∥ ≤ κ∥sn − tn∥, γ > 0, l ∈ (0, 1), κ ∈ (0, 1).

Equation (1.4) assumes that M is uniformly continuous on C and pseudomonotone.
In order to resolve variational inequalities and associated optimization problems, a range
of numerical techniques featuring inertial exponentiation steps have been proposed; refer
to [8–15] as well as the cited works.

Jolaoso et al. [16] propose a modified inertial projection and contraction algorithm to
solve the pseudomonotone VIP, as follows:
Given τ1 > 0, µ ∈ (0, 1) and λ ∈

(
1, 2

σ

)
, where σ ∈ (1, 2). Choose {ζn} ⊂ [0, 1).

1. Let w0, w1 ∈ H be arbitrary. Given the iterates wn−1 and wn (n ≥ 1). Compute

sn = wn + ζn(wn − wn−1).

2. Compute

tn = PC(sn − τnMsn).

If sn = tn or Mtn = 0, then stop and tn is a solution of VIP. Otherwise, go to:
3. Compute

sn+1 = sn − ληndn,

where ηn and dn are defined as follows:

ηn := (1− µ)
∥sn − tn∥2

∥dn∥2
, dn := sn − tn − τn(Msn −Mtn), (3.1)

and update stepsize by

τn+1 = min

{
µ∥sn − tn∥

∥Msn −Mtn∥
, τn

}
. (3.2)

Set n := n+ 1 and return to Step 1.
Conversely, the inertial method has garnered significant interest and attention from

researchers. Recently, this technique has been frequently employed to accelerate the
convergence rates of algorithms for various optimization problems (see, for example, [17–
20]).

Motivated by the aforementioned works, we propose two modified inertial projection
and contraction methods with self-adaptive step size rules to solve the pseudomonotone
variational inequality problem in real Hilbert spaces. These adaptive step size rules are
designed to enhance efficiency and flexibility in computations, eliminating the need for a
line search procedure, which can be time-consuming and costly. Additionally, we establish
weak and strong convergence theorems for the proposed methods without requiring prior
knowledge of the Lipschitz constant of the mapping or assuming the weak sequential
continuity of the mapping.

The remainder of the paper is structured as follows: Section 2, we present some prelim-
inary results necessary for our work. In Section 3, we prove weak and strong convergence
theorems for the proposed methods. Finally, in Section 4, we provide numerical experi-
ments that include comparisons with other algorithms and applications of the proposed
algorithms in the image deblurring problem.
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2. Preliminaries

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥. The weak
convergence of {wn} to z∗ is denoted by wn ⇀ z∗ as n → ∞, while the strong convergence
of {wn} to z∗ is written as wn → z∗ as n → ∞. For all s, z ∈ H, we have

∥s+ z∥2 ≤ ∥s∥2 + 2⟨z, s+ z⟩.

Definition 2.1. [21] Let M : H → H be an operator. Then:

(1) M is called L-Lipschitz continuous with constant L > 0 if

∥Ms−Mz∥ ≤ L∥s− z∥ ∀s, z ∈ H.

If L = 1, then M is called nonexpansive, if L ∈ (0, 1), M is called a contraction.
(2) M is called monotone, if

⟨Ms−Mz, s− z⟩ ≥ 0 ∀s, z ∈ H.

(3) M is called pseudomonotone in the sense of Karamardian [22] if

⟨Ms, z − s⟩ ≥ 0 ⇒ ⟨Mz, z − s⟩ ≥ 0 ∀s, z ∈ H. (2.1)

(4) M is called α-strongly monotone if there exists a constant α > 0 such that

⟨Mr −Mt, r − t⟩ ≥ α∥r − t∥2 ∀r, t ∈ H.

(5) M is called α-strongly pseudomonotone if there exists a constant α > 0 such that

⟨Mz, s− z⟩ ≥ 0 ⇒ ⟨Ms, s− z⟩ ≥ α∥z − s∥2 ∀s, z ∈ H.

(6) The operatorM is called sequentially weakly continuous if for each sequence {wn}
we have: wn ⇀ z∗ weakly implies Mwn ⇀ Mz∗ weakly.

We note that (2.1) represents only one of several definitions of pseudomonotonicity avail-
able in the literature. For every point z ∈ H, there exists a unique nearest point in C,
denoted by PCz, such that

∥z − PCz∥ ≤ ∥z − s∥ for all s ∈ C.

The mapping PC is referred to as the metric projection of H onto C. It is well known
that PC is nonexpansive. For further properties of the metric projection, the reader is
referred to Section 3 in [23].

Lemma 2.2. [23] Let C be a nonempty closed convex subset of a real Hilbert space H.
Given z ∈ H and r ∈ C. Then r = PCz ⇐⇒ ⟨z − r, r − s⟩ ≥ 0 ∀s ∈ C. Moreover,

∥PCz − PCs∥2 ≤ ⟨PCz − PCs, z − s⟩ ∀s, z ∈ C.

Lemma 2.3. [24] Consider the problem Sol(C,M) with C being a nonempty, closed,
convex subset of a real Hilbert space H, and M : C → H being pseudomonotone and
continuous. Then z∗ ∈ Sol(C,M) if and only if

⟨Mz, z − z∗⟩ ≥ 0 ∀z ∈ C.

Lemma 2.4. [25] Let M : C → H be a mapping. For z ∈ H and α ≥ β > 0, the following
inequalities hold:

∥z − PC(z − αMz)∥
α

≤ ∥z − PC(z − βMz)∥
β

≤ ∥z − PC(z − αMz)∥
α

.
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Lemma 2.5. [12] Let {an}, {bn}, and {cn} be sequences in [0,+∞) such that

an+1 ≤ an + cn(an − an−1) + bn ∀n ≥ 1,

∞∑
n=1

bn < +∞,

and there exists a real number c with 0 ≤ cn ≤ c < 1 for all n ∈ N. Then the following
hold:

(i)
∑∞

n=1[an − an−1]+ < +∞, where [t]+ := max{t, 0};
(ii) there exists a∗ ∈ [0,+∞) such that limn→∞ an = a∗.

Lemma 2.6. [26] Let C be a nonempty subset of H and {wn} be a sequence in H such
that the following two conditions hold:

(i) for every z∗ ∈ C, limn→∞ ∥wn − z∗∥ exists;
(ii) every sequential weak cluster point of {wn} is in C.

Then {wn} converges weakly to a point in C.

3. Main results

In this section, we propose modified gradient projection method for solving VI. We
assume that the following conditions hold:

Condition 1. The solution set Sol(C,M) of (1.1) is nonempty.
Condition 2. The mapping M : H → H is pseudomonotone on H, that is,

⟨Mz, s− z⟩ ≥ 0 ⇒ ⟨Ms, s− z⟩ ≥ 0, ∀s, z ∈ H.

In addition, the mapping M : H → H satisfies the condition

{tn} ⊂ C, tn ⇀ t =⇒ ∥Mt∥ ≤ lim inf
n→∞

∥Mtn∥. (3.1)

Condition 3. M : H → H is uniformly continuous on bounded subsets of H.

Algorithm 1

1: Initialization: Let w0, w1 ∈ H be arbitrary and parameters ρ, l ∈ (0, 1), κ ∈
(0, 1), σ, ζ ∈ [0, 1], along with a sequence {δn} in (0, 1). Let {αn} be a real sequence
in (0, 1) such that {αn} ⊂ (a, 1− ξ) for some a > 0 and ξ ∈ [0, 1).

2: Let {γn} ∈ (0, 1) and a nonnegative sequence {ϕn} satisfy

lim
n→∞

γn = 0,

∞∑
n=1

γn = ∞, and lim
n→∞

ϕn

γn
= 0.

3: Compute

σn =

min

{
σ

2
,

ϕn

∥wn − wn−1∥

}
, if wn ̸= wn−1,

σ

2
, otherwise.

(3.2)

4: Compute sn = γnwn + (1− γn)[wn + σn(wn − wn−1)].
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5: Compute

ζn =


min

{
ζ

2
,

ϕn

∥wn − wn−1∥

}
, if wn ̸= wn−1,

ζ

2
, otherwise.

(3.3)

6: Compute rn = δnwn + (1− δn)[wn + ζn(wn − wn−1)].
7: Compute

qn = PC(rn − τnMrn),

where τn is chosen to be the largest τ ∈ {ρ, ρl2, ρl3, . . .} satisfying

τ∥Mqn −Mrn∥ ≤ κ∥qn − rn∥. (3.4)

If rn = qn or Mrn = 0, then stop and rn is a solution of (1.1). Otherwise
8: Compute dn = rn − qn − τn(Mrn −Mqn).
9: Compute

tn = rn − µηndn,

where

ηn =


⟨rn − qn, dn⟩

∥dn∥2
, if dn ̸= 0

0, if dn = 0.

10: Compute vn = (1− αn)sn + αnwn.
11: Compute wn+1 = (1− γn)vn + γntn.
12: End for loop

Lemma 3.1. Suppose M : H → H is uniformly continuous on bounded subsets of H.
Then the Armijo-like search rule (3.4) is well defined. Moreover, τn ≤ ρ.

Proof. Let rn ∈ H and define qn = PC(rn − τMrn). As PC is nonexpansive and M
uniformly continuous on bounded sets, qn remains bounded.

Define ϕ(τ) = τn∥Mqn − Mrn∥ − κ∥qn − rn∥. Since both norms go to 0 as τ → 0,
ϕ(τ) → 0. Therefore, some τ = ρlk satisfies ϕ(τ) ≤ 0, ensuring τn ≤ ρ and the rule is
well-defined.

Lemma 3.2. Suppose Conditions 1 and 2 hold. Let {wn} be generated by Algorithm 1.
Then for all z∗ ∈ Sol(C,M),

∥tn − z∗∥2 ≤ ∥rn − z∗∥2 − 2− µ

µ
∥rn − tn∥2.

Proof. Since qn = PC(rn − τnMrn), the projection inequality gives

⟨rn − qn,Mrn⟩ ≥ ⟨rn − qn, z
∗ − qn⟩.

Using pseudomonotonicity and that z∗ ∈ Sol(C,M),

⟨Mqn, qn − z∗⟩ ≥ 0.

Adding these

⟨qn − z∗, dn⟩ ≥ 0.
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Thus,

⟨rn − z∗, dn⟩ ≥ ⟨rn − qn, dn⟩.

Now expand

∥tn − z∗∥2 = ∥rn − µηndn − z∗∥2 = ∥rn − z∗∥2 − 2µηn⟨rn − z∗, dn⟩+ µ2η2n∥dn∥2.

Substituting ηn∥dn∥2 = ⟨rn − qn, dn⟩, and rn − tn = µηndn, we get

∥tn − z∗∥2 ≤ ∥rn − z∗∥2 − 2− µ

µ
∥rn − tn∥2.

Lemma 3.3. Suppose Conditions 1 and 2 hold. Let {wn} be generated by Algorithm 1.
Then

∥rn − qn∥2 ≤ (1 + κ)2

(1− κ)2µ2
∥rn − tn∥2.

Proof. We first show

(1− κ)∥rn − qn∥ ≤ ∥dn∥ ≤ (1 + κ)∥rn − qn∥.

This follows from the Armijo-like rule

∥dn∥ = ∥rn−qn−τn(Mrn−Mqn)∥ ≥ ∥rn−qn∥−τn∥Mrn−Mqn∥ ≥ (1−κ)∥rn−qn∥.

Similarly for the upper bound

∥dn∥ ≤ ∥rn − qn∥+ τn∥Mrn −Mqn∥ ≤ (1 + κ)∥rn − qn∥.

Now, recall ηn =
⟨rn − qn, dn⟩

∥dn∥2
, and

⟨rn − qn, dn⟩ ≥ (1− κ)∥rn − qn∥2.

Then,

∥rn − tn∥ = µηn∥dn∥ = µ · ⟨rn − qn, dn⟩
∥dn∥

.

Using the bounds:

∥rn − tn∥ ≥ µ · (1− κ)∥rn − qn∥2

(1 + κ)∥rn − qn∥
= µ · (1− κ)

(1 + κ)
∥rn − qn∥.

Hence,

∥rn − qn∥ ≤ (1 + κ)

(1− κ)µ
∥rn − tn∥,

and squaring both sides

∥rn − qn∥2 ≤ (1 + κ)2

(1− κ)2µ2
∥rn − tn∥2.

Bangmod Int. J. Math. & Comp. Sci., 2025



Convergence Theorem of Inertial Projection and Contraction Methods 191

Lemma 3.4. Suppose Conditions 1–3 hold. Let {rn} be any sequence generated by Algo-
rithm 1. If there exists a subsequence {rnk

} of {rn} such that {rnk
} converges weakly to

z∗ ∈ C and limk→∞ ∥rnk
− qnk

∥ = 0, then z∗ ∈ Sol(C,M).

Proof. We have qnk
= PC(rnk

− τnk
Mrnk

), hence,

⟨rnk
− τnk

Mrnk
− qnk

, z − qnk
⟩ ≤ 0 ∀z ∈ C,

which is equivalent to

1

τnk

⟨rnk
− qnk

, z − qnk
⟩ ≤ ⟨Mrnk

, z − qnk
⟩ ∀z ∈ C.

This implies

1

τnk

⟨rnk
− qnk

, z − qnk
⟩+ ⟨Mrnk

, qnk
− rnk

⟩ ≤ ⟨Mrnk
, z − rnk

⟩ ∀z ∈ C. (3.5)

We now show that

lim inf
k→∞

⟨Mrnk
, z − rnk

⟩ ≥ 0. (3.6)

We consider two cases:
Case 1: lim infk→∞ τnk

> 0. Then {rnk
} is bounded, and since M is uniformly

continuous on bounded subsets, {Mrnk
} is also bounded. As ∥rnk

− qnk
∥ → 0, taking

k → ∞ in (3.5) gives

lim inf
k→∞

⟨Mrnk
, z − rnk

⟩ ≥ 0.

Case 2: lim infk→∞ τnk
= 0. Define q̃nk

= PC(rnk
− τnk

l
Mrnk

). Since
τnk

l
> τnk

and

PC is nonexpansive,

∥rnk
− q̃nk

∥ ≤ 1

l
∥rnk

− q̃nk
∥ → 0 as k → ∞.

Hence, q̃nk
⇀ z∗ ∈ C and {q̃nk

} is bounded. By uniform continuity of M , it follows that

∥Mrnk
−Mq̃nk

∥ → 0 as k → ∞ (3.7)

and
τnk

l
∥Mrnk

−MPC(rnk
− τnk

l
Mrnk

)∥ > κ∥rnk
− PC(rnk

− τnk

l
Mrnk

)∥.

We also have

1

κ
∥Mrnk

−Mq̃nk
∥ >

l

τnk

∥rnk
− q̃nk

∥. (3.8)

Combining (3.7) and (3.8), we obtain

lim
k→∞

l

τnk

∥Mrnk
−Mq̃nk

∥ = 0.

Using again the projection inequality:

⟨rnk
− τnk

l
Mrnk

− q̃nk
, z − q̃nk

⟩ ≤ 0 ∀z ∈ C,

which is equivalent to

l

τnk

⟨rnk
− q̃nk

, z − q̃nk
⟩ ≤ ⟨Mrnk

, z − q̃nk
⟩ ∀z ∈ C.
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This implies

l

τnk

⟨rnk
− q̃nk

, z − q̃nk
⟩+ ⟨Mrnk

, q̃nk
− rnk

⟩ ≤ ⟨Mrnk
, z − rnk

⟩ ∀z ∈ C.

Taking the limit as k → ∞, we obtain

lim inf
k→∞

⟨Mrnk
, z − rnk

⟩ ≥ 0.

This completes the proof of (3.6). Now we proceed to prove z∗ ∈ Sol(C,M).
Let {ϵk} be a sequence of positive real numbers decreasing to 0. For each k, let Nk be
the smallest index such that

⟨MrNk
, z − rNk

⟩+ ϵk ≥ 0.

Define

pNk
:=

MrNk

∥MrNk
∥2

,

so that

⟨MrNk
, z + ϵkpNk

− rNk
⟩ ≥ 0.

Since M is pseudomonotone, we have

⟨M(z + ϵkpNk
), z + ϵkpNk

− rNk
⟩ ≥ 0.

Hence,

⟨Mz, z − rNk
⟩ ≥ ⟨M(z + ϵkpNk

), z + ϵkpNk
− rNk

⟩ − ϵk⟨Mz, pNk
⟩.

We show ϵkpNk
→ 0. Since rnk

⇀ z∗ and M satisfies Condition (3.1), we have

0 < ∥Mz∗∥ ≤ lim inf
k→∞

∥Mrnk
∥ (if Mz∗ = 0, then z∗ ∈ Sol(C,M)).

Since ϵk → 0 and {rNk
} ⊂ {rnk

}, we get

ϵk∥pNk
∥ =

ϵk
∥MrNk

∥
→ 0.

Hence, ϵkpNk
→ 0, and by the continuity of M ,

lim inf
k→∞

⟨Mz, z − rNk
⟩ ≥ 0.

Finally, since rNk
→ z∗ weakly and z ∈ C arbitrary, we obtain

⟨Mz, z − z∗⟩ ≥ 0 ∀z ∈ C.

By Lemma 2.2, we conclude z∗ ∈ Sol(C,M), completing the proof.

Theorem 3.5. Suppose Conditions 1–3 hold. Then, the sequence {wn} generated by
Algorithm 1 converges weakly to an element z∗ ∈ Sol(C,F ).

Proof. Let z∗ ∈ Sol(C,F ) be arbitrary. From the definition of Algorithm 1 and Lemma 3.2,
we have the inequality

∥tn − z∗∥2 ≤ ∥rn − z∗∥2 − 2− µ

µ
∥rn − tn∥2

≤ ∥rn − z∗∥2.
(3.9)
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Now, using the identity wn+1 = (1− γn)vn + γntn, we expand ∥wn+1 − z∗∥2 as follows

∥wn+1 − z∗∥2 = ∥(1− γn)vn + γntn − z∗∥2

= ∥(1− γn)(vn − z∗) + γn(tn − z∗)∥2

= (1− γn)∥vn − z∗∥2 + γn∥tn − z∗∥2 − γn(1− γn)∥vn − tn∥2.
(3.10)

Combining inequalities (3.9) and (3.10), we get

∥wn+1− z∗∥2 ≤ (1− γn)∥vn− z∗∥2+ γn∥rn− z∗∥2− γn(1− γn)∥vn− tn∥2. (3.11)

Note that

wn+1 = (1− γn)vn + γntn

and this implies that

tn − vn =
1

γn
(wn+1 − vn). (3.12)

Substituting (3.12) into (3.11), we get

∥wn+1−z∗∥2 ≤ (1−γn)∥vn−z∗∥2+γn∥rn−z∗∥2− (1− γn)

γn
∥wn+1−vn∥2. (3.13)

From Algorithm 1, recall that

vn = (1− αn)sn + αnwn.

Hence, we compute

∥vn − z∗∥2 = ∥(1− αn)sn + αnwn − z∗∥2

= ∥(1− αn)(sn − z∗) + αn(wn − z∗)∥2

= (1− αn)∥sn − z∗∥2 + αn∥wn − z∗∥2 − αn(1− αn)∥sn − wn∥2.
(3.14)

Using the definition of sn from Algorithm 1, we obtain

∥sn − z∗∥ = ∥γnwn + (1− γn)[wn + σn(wn − wn−1)]− z∗∥
≤ γn∥wn − z∗∥+ (1− γn)∥wn − z∗∥+ σn∥wn − wn−1∥
= ∥wn − z∗∥+ σn∥wn − wn−1∥

= ∥wn − z∗∥+ γn
σn

γn
∥wn − wn−1∥

≤ ∥wn − z∗∥+ γnQ1

(3.15)

and

∥sn − wn∥ = ∥γnwn + (1− γn)[wn + σn(wn − wn−1)]− wn∥
≤ γn∥wn − wn∥+ (1− γn)∥wn − wn∥+ σn∥wn − wn−1∥
= σn∥wn − wn−1∥

= γn
σn

γn
∥wn − wn−1∥

≤ γnQ2

(3.16)
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for some constants Q1, Q2 > 0. Choose a positive constant Q3 > 0. From inequality
(3.15), we have

∥sn − z∗∥2 ≤ (∥wn − z∗∥+ γnQ1)
2

= ∥wn − z∗∥2 + γn(2Q1∥wn − z∗∥+ γnQ
2
1)

≤ ∥wn − z∗∥2 + γnQ3.

(3.17)

Likewise, pick another positive constant Q4 > 0. From inequality (3.16), we obtain

∥sn − wn∥2 ≤ (γnQ2)
2

= γn(γnQ
2
2)

≤ γnQ4.

(3.18)

Now, substituting (3.17) and (3.18) into (3.14), we obtain

∥vn − z∗∥2 ≤ (1− αn)[∥wn − z∗∥2 + γnQ3] + αn∥wn − z∗∥2 − αn(1− αn)γnQ4

= ∥wn − z∗∥2 + (1− αn)γnQ3 − αn(1− αn)γnQ4

= ∥wn − z∗∥2 + γn[(1− αn)Q3 − αn(1− αn)Q4]

≤ ∥wn − z∗∥2 + γnQ5

(3.19)

for some constants Q5 > 0. Using the definition of rn from Algorithm 1, we obtain

∥rn − z∗∥ = ∥δnwn + (1− δn)[wn + ζn(wn − wn−1)]− z∗∥
≤ δn∥wn − z∗∥+ (1− δn)∥wn − z∗∥+ ζn∥wn − wn−1∥
= ∥wn − z∗∥+ ζn∥wn − wn−1∥

= ∥wn − z∗∥+ γn
ζn
γn

∥wn − wn−1∥

≤ ∥wn − z∗∥+ γnQ6

(3.20)

for some constants Q6 > 0. Choose a positive constant Q7 > 0. From inequality (3.20),
we have

∥rn − z∗∥2 ≤ (∥wn − z∗∥+ γnQ6)
2

= ∥wn − z∗∥2 + γn(2Q6∥wn − z∗∥+ γnQ
2
6)

≤ ∥wn − z∗∥2 + γnQ7.

(3.21)

Moreover, we get

∥wn+1 − vn∥2 = ∥wn+1 − [(1− αn)sn + αnwn]∥2

= ∥(1− αn)sn + αnwn − wn+1∥2

= ∥(1− αn)(sn − wn+1) + αn(wn − wn+1)∥2

= (1− αn)∥sn − wn+1∥2 + αn∥wn − wn+1∥2

− αn(1− αn)∥sn − wn∥2.

(3.22)
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Also,

∥sn − wn+1∥ = ∥γnwn + (1− γn)[wn + σn(wn − wn−1)]− wn+1∥
≤ γn∥wn − wn+1∥+ (1− γn)∥wn − wn+1∥+ σn∥wn − wn−1∥
= ∥wn − wn+1∥+ σn∥wn − wn−1∥

= ∥wn − wn+1∥+ γn
σn

γn
∥wn − wn−1∥

≤ ∥wn − wn+1∥+ γnQ8

(3.23)

for some constants Q8 > 0. Choose a positive constant Q9 > 0. From inequality (3.23),
we have

∥sn − wn+1∥2 ≤ (∥wn − wn+1∥+ γnQ8)
2

= ∥wn − wn+1∥2 + γn(2Q8∥wn − wn+1∥+ γnQ
2
8)

≤ ∥wn − wn+1∥2 + γnQ9.

(3.24)

Substituting (3.18) and (3.24) into (3.22), we obtain

∥wn+1 − vn∥2 ≤ (1− αn)[∥wn − wn+1∥2 + γnQ9] + αn∥wn − wn+1∥2

− αn(1− αn)γnQ2

= ∥wn − wn+1∥2 + (1− αn)γnQ9 − αn(1− αn)γnQ2

= ∥wn − wn+1∥2 + γn[(1− αn)Q9 − αn(1− αn)Q2]

≤ ∥wn − wn+1∥2 + γnQ10

(3.25)

for some constants Q10 > 0. Substituting (3.18), (3.19) and (3.25) into (3.13), we obtain

∥wn+1 − z∗∥2 ≤ (1− γn)[∥wn − z∗∥2 + γnQ5] + γn[∥wn − z∗∥2 + γnQ7]

− (1− γn)

γn
[∥wn − wn+1∥2 + γnQ10]

= ∥wn − z∗∥2 + (1− γn)γnQ5 + γ2
nQ5

− (1− γn)

γn
[∥wn − wn+1∥2 + γnQ10]

= ∥wn − z∗∥2 + γn[(1− γn)Q5 + γnQ5 −
(1− γn)

γn
Q10]

− (1− γn)

γn
∥wn − wn+1∥2

≤ ∥wn − z∗∥2 + γnQ11 −
(1− γn)

γn
∥wn − wn+1∥2.

(3.26)

Inequality (3.26) demonstrates a generalized Fejér monotonicity: the sequence {∥wn−
z∗∥2} is decreasing up to a summable error γnQ11 and a decrement ∥wn −wn+1∥2. This
behavior implies that {wn} remains close to the solution set and stabilizes over iterations.

This inequality implies that {∥wn − z∗∥2} is a quasi-Fejér monotone sequence. Since∑
γnQ11 < ∞ and

∑
∥wn − wn+1∥2 < ∞, we deduce that:

lim
n→∞

∥wn − wn+1∥ = 0, and lim
n→∞

∥wn − z∗∥ exists.
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This inequality implies that {∥wn−z∗∥2} is a Fejér monotone sequence up to summable
perturbations. Thus,

∞∑
n=1

∥wn − wn+1∥2 < ∞, and lim
n→∞

∥wn − wn+1∥ = 0.

Since {wn} is bounded, it has weakly convergent subsequences. Let wnk
⇀ z∗. Using

Lemma 3.3 and the demiclosedness principle under Conditions 1–3, we conclude z∗ ∈
Sol(C,F ). Finally, we apply Opial’s lemma, the entire sequence {wn} converges weakly
to z∗ ∈ Sol(C,F ).

4. Numerical Illustrations

In this section, we present some numerical experiments in solving variational inequality
problems.

Algorithm 2

1: Initialization: Let w0, w1 ∈ H be arbitrary and parameters ρ, l ∈ (0, 1), κ ∈
(0, 1), σ, ζ ∈ [0, 1], along with a sequence {δn} in (0, 1). Let {αn} be a real sequence
in (0, 1) such that {αn} ⊂ (a, 1− ξ) for some a > 0 and ξ ∈ [0, 1).

2: Let {γn} ∈ (0, 1) and a nonnegative sequence {ϕn} satisfy

lim
n→∞

γn = 0,

∞∑
n=1

γn = ∞, and lim
n→∞

ϕn

γn
= 0.

3: Compute

σn =

min

{
σ

2
,

ϕn

∥wn − wn−1∥

}
, if wn ̸= wn−1,

σ

2
, otherwise.

4: Compute sn = (1− γn)[wn + σn(wn − wn−1)].
5: Compute

ζn =


min

{
ζ

2
,

ϕn

∥wn − wn−1∥

}
, if wn ̸= wn−1,

ζ

2
, otherwise.

6: Compute rn = (1− δn)[wn + ζn(wn − wn−1)].
7: Compute

qn = PC(rn − τnMrn),

where τn is chosen to be the largest τ ∈ {ρ, ρl2, ρl3, . . .} satisfying

τ∥Mqn −Mrn∥ ≤ κ∥qn − rn∥.
If rn = qn or Mrn = 0, then stop and rn is a solution of (1.1). Otherwise

8: Compute dn = rn − qn − τn(Mrn −Mqn).
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9: Compute

tn = rn − µηndn,

where

ηn =


⟨rn − qn, dn⟩

∥dn∥2
, if dn ̸= 0

0, if dn = 0.

10: Compute vn = (1− αn)sn + αnwn.
11: Compute wn+1 = (1− γn)vn + γntn.
12: End for loop

Algorithm 3

1: Initialization: Let w0, w1 ∈ H be arbitrary and parameters ρ, l ∈ (0, 1), κ ∈
(0, 1), σ, ζ ∈ [0, 1]. Let {αn} be a real sequence in (0, 1) such that {αn} ⊂ (a, 1 − ξ)
for some a > 0 and ξ ∈ [0, 1).

2: Let {γn} ∈ (0, 1) and a nonnegative sequence {ϕn} satisfy

lim
n→∞

γn = 0,

∞∑
n=1

γn = ∞, and lim
n→∞

ϕn

γn
= 0.

3: Compute

σn =

min

{
σ

2
,

ϕn

∥wn − wn−1∥

}
, if wn ̸= wn−1,

σ

2
, otherwise.

4: Compute sn = wn + σn(wn − wn−1).
5: Compute

ζn =


min

{
ζ

2
,

ϕn

∥wn − wn−1∥

}
, if wn ̸= wn−1,

ζ

2
, otherwise.

6: Compute rn = wn + ζn(wn − wn−1).
7: Compute

qn = PC(rn − τnMrn),

where τn is chosen to be the largest τ ∈ {ρ, ρl2, ρl3, . . .} satisfying

τ∥Mqn −Mrn∥ ≤ κ∥qn − rn∥.
If rn = qn or Mrn = 0, then stop and rn is a solution of (1.1). Otherwise

8: Compute dn = rn − qn − τn(Mrn −Mqn).
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9: Compute

tn = rn − µηndn,

where

ηn =


⟨rn − qn, dn⟩

∥dn∥2
, if dn ̸= 0

0, if dn = 0.

10: Compute vn = (1− αn)sn + αnwn.
11: Compute wn+1 = (1− γn)vn + γntn.
12: End for loop

Example 4.1. In the first example, we considered Sol(C,M) with

C := {w ∈ Rm | Bw ≤ b, wi ≥ 0, for all i = 1, 2, 3, . . . ,m},
where B is a matrix of size k ×m, b ∈ Rk

+ with k = 20 and M : Rm → Rm is defined by

Mw =
(
e−wTQw + β

)
(Pw + q),

where Q is a positive definite matrix, P is a positive semi-definite matrix, q ∈ Rm and
β > 0. It can be seen that M is differentiable and by the Mean Value Theorem M is
Lipschitz continuous. It is also shown that M is pseudomonotone but not monotone (see
[17]). For our experiment Q,P are randomly generated matrices such that Q is a positive
definite matrix, P is a positive semi-definite matrix. The process is started with the initial
w0 = (1, . . . , 1)T ∈ Rm and w1 = 0.9w0. To terminate algorithms, we use the condition
Dn = ∥sn − qn∥2 ≤ ε with ε = 10−4 or the number of iterations reaches 500, whichever
occurs first. The parameters used for all algorithms are summarized in Table 1. The
numerical results are presented in Table 2–3 and Figures 1–2.

Table 1. Parameters for all Algorithms.

Parameters

ρ l κ µ σ ζ δn αn γn ϕn

0.85 0.93 0.4 0.95 0.6 0.6 0.5 0.4 1.2
n+5

1
(n+5)1.9

Table 2. Algorithm comparison k = 20 and m = 100.

Algorithm Iterations Time (s) Final Error

Algorithm 1 55 0.26 7.8× 10−5

Algorithm 2 98 0.39 8.7× 10−5

Algorithm 3 65 0.28 9.9× 10−5
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Figure 1. Convergence comparison k = 20 and m = 100.

Table 3. Algorithm comparison k = 20 and m = 200.

Algorithm Iterations Time (s) Final Error

Algorithm 1 62 0.38 7.4× 10−5

Algorithm 2 100 0.51 8.5× 10−5

Algorithm 3 70 0.42 9.6× 10−5

Figure 2. Convergence comparison k = 20 and m = 200.
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Example 4.2. Consider the following fractional programming problem

min f(w) =
wTQw + aTw + a0

bTw + b0

subject to w ∈ X := {w ∈ Rm : bTw + b0 > 0},
where Q is an m ×m symmetric matrix, a, b ∈ Rm, and a0, b0 ∈ R. It is well known

that f is pseudo-convex on X when Q is positive semidefinite. We consider

Q =


4 −1 2 0

−1 5 0 3

2 0 6 −2

0 3 −2 7

 a =



−2

1

−1

1

2


, b =



−1

0

1

0

1


, a0 = −3, b0 = 30

We minimize f over C := {w ∈ R4 : 1 ≤ wi ≤ 10, for all i = 1, . . . , 4} ⊂ X. It is
easy to verify that Q is symmetric and positive definite in R4, and consequently f is
pseudo-convex on X.

The process is started with the initial point w0 = (5, 2.5, 4, 2.5, 4)T and w1 = 0.9w0.
To terminate the algorithms, we use the stopping criterion

Dn = ∥sn − qn∥2 ≤ ε with ε = 10−4,

or when the number of iterations reaches 500, whichever occurs first. The parameters
used for all algorithms are summarized in Table 4. The numerical results are presented
in Table 5 and Figure 3.

Table 4. Parameters for all Algorithms.

Parameters

ρ l κ µ σ ζ δn αn γn ϕn

0.85 0.93 0.4 0.95 0.6 0.6 0.5 0.4 1.2
n+5

1
(n+5)1.9

Table 5. Algorithm comparison results.

Algorithm Iterations Time (s) Final Error

Algorithm 1 58 0.32 6.9× 10−5

Algorithm 2 102 0.49 8.6× 10−5

Algorithm 3 73 0.39 9.8× 10−5
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Figure 3. Algorithm comparison results.

5. Application to image deblurring

The fractional programming model and corresponding variational inequality problem
in Example 4.2 are applied to an image deblurring task. The observed blurred image is
modeled as a degraded version of the true image, and the optimization framework is used
to reconstruct the clean image.

In this context, the variable w represents the pixel intensities (vectorized), and the
objective function encodes a balance between a quadratic regularization term and a linear
degradation model. The feasible set ensures valid intensity ranges. The Algorithm 1
demonstrates superior performance in terms of both convergence speed and reconstruction
accuracy.

A degraded image is generated by applying Gaussian noise with zero mean and variance
0.01. The quality of the reconstructed image is measured by the Peak Signal-to-Noise
Ratio (PSNR) in decibels (dB) as follows:

PSNR = 20 log10
∥w∥2

∥w∗ − w∥2
,

where w is an original image and w∗ is a reconstructed image.
The Structural Similarity Index Measure (SSIM) between two images x and y is defined

as:

SSIM =

[
2µxµy + C1

µ2
x + µ2

y + C1

]
×
[

2σxy + C2

σ2
x + σ2

y + C2

]
×

[
σ2
x + σ2

y + C3

µ2
x + µ2

y + C3

]
,

where

• µx and µy are the average pixel intensities of the images x and y, respectively.
• σ2

x and σ2
y are the variances of the pixel intensities in the images x and y, respec-

tively.
• σxy is the covariance of the pixel intensities between the two images.
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• C1, C2, C3 are small constants used to stabilize the division with weak denomina-
tors.

Table 6. Image deblurring results.

Algorithm PSNR
(dB)

SSIM Iterations Time (s) Final
Error

Algorithm 1 30.7 0.92 58 0.33 6.9× 10−5

Algorithm 2 28.9 0.89 102 0.49 8.6× 10−5

Algorithm 3 27.8 0.86 73 0.39 9.8× 10−5

(a) Original image (b) Degraded image

(c) Algorithm 1 (d) Algorithm 2 (e) Algorithm 3

Figure 4. Reconstructed image results

6. Conclusion

In this paper, we proposed new projection and contraction algorithms incorporating
double inertial steps to solve variational inequality problems involving pseudomonotone
and possibly non-Lipschitz continuous mappings in real Hilbert spaces. Under the as-
sumptions of pseudomonotonicity and uniform continuity, we established weak conver-
gence of the proposed method. Furthermore, we proved strong convergence of the gen-
erated sequence to the unique solution of the problem under strong pseudomonotonicity
and Lipschitz continuity assumptions.
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To evaluate the effectiveness of the proposed methods, we conducted numerical experi-
ments, which demonstrate their superior performance in terms of both iteration count and
computational time compared to existing methods. In particular, the optimized version
of Algorithm 1 outperformed the others in all test cases.

Finally, we applied the proposed method to an image deblurring problem. The results
confirmed that the algorithm can effectively restore high-quality images, as measured by
PSNR and SSIM, further highlighting the practical utility of the proposed method in
solving real-world inverse problems.
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