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Abstract This paper developed and assessed four methods for constructing confidence intervals (CIs)

for the parameter of the XRani distribution, which is frequently applied in the analysis of lifetime data.

The CIs examined include the likelihood-based CI, Wald-type CI, bootstrap-t CI, and the bias-corrected

and accelerated (BCa) bootstrap CI. To evaluate their performance, both a simulation study and a

real-world application were conducted. The evaluation criteria focused on empirical coverage probability

(ECP) and average width (AW) across a range of scenarios. To enhance computational efficiency, an

explicit analytical expression for the Wald-type CI was derived. Simulation results demonstrated that

the likelihood-based and Wald-type CIs consistently achieved ECPs close to the nominal 0.95 confidence

level across most scenarios. In contrast, for smaller sample sizes, the bootstrap-t and BCa bootstrap

methods yielded lower ECPs. However, as sample sizes increased, the ECPs of both bootstrap methods

gradually approached the nominal level. The parameter values were also found to influence performance:

at lower parameter values, all CIs performed well, with the likelihood-based and Wald-type methods

maintaining an ECP close to 0.95. At higher parameter values and smaller sample sizes, however, the

bootstrap-t and BCa methods exhibited diminished coverage probabilities. The practical utility of these

CI methods was further demonstrated through the applications to PM2.5 concentration data collected in

Bangkok, Thailand. The results from this empirical analysis corroborated the findings of the simulation

study, thereby affirming the robustness and applicability of the proposed CI methods.
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1. Introduction

Lifetime data analysis is a statistical approach used to estimate the time until the
occurrence of a specific event, such as system failure or the onset of a particular incident
[1]. A distinguishing characteristic of this methodology is its ability to manage censored
data, wherein some subjects do not experience the event of interest within the study
period. This aspect necessitates the use of specialized statistical techniques designed to
account for incomplete observations.

Lifetime data are typically non-normally distributed and are often modeled using prob-
ability distributions such as the Weibull, exponential, gamma, log-normal, or Lindley
distributions. Among these, the exponential and Lindley distributions are frequently em-
ployed due to their mathematical simplicity and analytical tractability. However, both
distributions exhibit significant limitations. The exponential distribution assumes a con-
stant hazard rate and possesses a memoryless property [19], assumptions that often do
not align with empirical data. Although the Lindley distribution provides a refinement
over the exponential model [14], it still falls short in capturing the complexity of datasets
characterized by non-constant hazard rates and heterogeneous failure time behaviors.
Therefore, there is a compelling need for the development of novel and flexible probabil-
ity distributions capable of more accurately modeling lifetime data. Such advancements
would contribute to improved data fitting and more reliable inferential outcomes in sur-
vival and reliability analyses.

Researchers employ a variety of strategies to construct novel probability distributions or
enhance the performance of existing classical models. A widely adopted technique involves
the introduction of additional parameters to improve model flexibility. Examples include
the two-parameter Lindley distribution [27], the three-parameter Lindley distribution [37],
the exponentiated Shanker distribution [20], and the two-parameter Shanker distribution
[22]. While these extensions offer greater adaptability in fitting diverse datasets, they
also increase model complexity, potentially compromising interpretability.

This added complexity may result in overfitting, particularly when applied to small
sample sizes, thereby necessitating larger datasets to obtain reliable estimates. More-
over, the estimation of parameters becomes more intricate, often requiring sophisticated
numerical techniques. The computational burden associated with such models can pose
challenges in practical applications, especially in resource-constrained environments.

In contrast to approaches that increase model complexity through the addition of
parameters, several researchers have introduced new mixed probability distributions that
achieve enhanced flexibility without the need for supplementary parameters. Notable
examples include the Shanker distribution [28], the Aradhana distribution [30], the Rani
distribution [34], the Gharaibeh distribution [13], the Iwueze distribution [10], the Juchez
distribution [9], and the Ola distribution [2]. These mixed distributions, which are often
derived as extensions or generalizations of the Lindley distribution, have demonstrated
superior performance compared to classical models, particularly in terms of flexibility
and goodness-of-fit. Their ability to accommodate a wide variety of data patterns makes
them highly adaptable and valuable for practical applications across numerous fields. As
such, they offer a robust and efficient framework for modeling lifetime and reliability data
without the trade-offs associated with parameter-rich models.

Among the various recently proposed distributions, the XRani distribution, introduced
by Etaga et al. [11], has emerged as a notable advancement. It is formulated as a mix-
ture of the exponential and Rani distributions and has exhibited remarkable efficacy in
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modeling lifetime data. Empirical studies, including analyses of Vinyl chloride concentra-
tion data and monthly sulfur dioxide levels, have demonstrated the XRani distributions
superior performance and robustness across a variety of environmental and reliability
contexts.

Compared to classical lifetime distributions, the XRani distribution offers superior
adaptability in modeling datasets with moderate to high kurtosis and non-monotonic
hazard rate behaviorsituations where distributions such as the exponential, Weibull, or
Lindley often fail to capture the underlying complexity. While recently developed one-
parameter mixed distributions, including the Shanker, Aradhana, Gharaibeh, Iwueze,
Juchez, and Ola distributions, have improved flexibility without introducing additional pa-
rameters, their performance may deteriorate when dealing with data that simultaneously
exhibit skewness, heavy tails, and varying hazard shapes. The XRani distribution retains
the analytical simplicity of one-parameter distributions while enhancing tail flexibility and
accommodating diverse hazard rate forms. This unique balance between interpretability,
robustness, and goodness-of-fit positions the XRani distribution as a practical and effi-
cient alternative for lifetime data analysis in real-world settings, particularly when both
distribution simplicity and fitting accuracy are essential. These characteristics motivate
the present studys focus on inference procedures for the XRani distribution, particularly
in applications where interpretability and fit are both essential.

The confidence interval (CI) is a fundamental statistical tool used to quantify the
uncertainty associated with parameter estimation in the context of statistical inference.
It provides a range of plausible values within which the true parameter is expected to lie
with a specified level of confidence. Constructing accurate CIs is particularly critical in
lifetime data analysis, where precise parameter estimation directly impacts model validity
and the reliability of inferential conclusions.

Despite the growing interest in the XRani distribution and its demonstrated effec-
tiveness in modeling complex lifetime datasets, a comprehensive review of the existing
literature reveals a notable gap: no studies to date have developed or assessed confidence
interval estimation methods specifically tailored for the XRani distribution. This absence
represents a critical shortcoming, particularly given the distribution’s increasing relevance
in real-world applications.

To address this gap, the present study proposes four distinct methods for constructing
confidence intervals for the XRani distribution’s parameter. To the best of our knowledge,
this is the first study to develop and assess the CI estimation methods for the XRani
distribution. These include: the likelihood-based CI, the Wald-type CI, the bootstrap-
t CI, and the bias-corrected and accelerated (BCa) bootstrap CI. Each method offers
unique advantages in terms of coverage accuracy, computational feasibility, and robustness
to distributional assumptions. To systematically evaluate the performance of these four
CI estimation techniques, extensive Monte Carlo simulation experiments were conducted
under varying sample sizes and parameter settings.

In addition to simulation-based validation, the practical utility of the proposed ap-
proaches was demonstrated through an empirical application to real environmental data.
Specifically, two datasets on PM2.5 concentrations in Bangkok were analyzed using the
XRani distribution, with all four CI estimation methods applied to assess and compare
their performance in real-world conditions.

This study makes several contributions to the statistical literature. First, it is the first
to systematically investigate and compare interval estimation procedures for the XRani
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distribution–a flexible one-parameter lifetime model capable of capturing skewed and
heavy-tailed data patterns. Second, the study explores the performance of both classical
and bootstrap-based CI methods, offering practical guidance for implementation. Lastly,
by applying the XRani distribution to real PM2.5 datasets, this paper demonstrates the
relevance of the proposed methods to environmental monitoring, bridging methodological
development with real-world application.

The remainder of this paper is organized as follows. Section 2 introduces the Rani and
the XRani distributions, point parameter estimation, and outlines the four methods for
constructing CIs. Section 3 presents the simulation studies and results. Section 4 applies
the proposed methods to two real-world PM2.5 datasets. Section 5 concludes with key
findings. The practical recommendations, limitations, and directions for future work are
provided in Sections 6, 7, and 8, respectively.

2. Methodology

This section provides an overview of the XRani distribution, with emphasis on point
estimation of its parameter and the construction of CIs. The discussion includes the
application of maximum likelihood estimation for obtaining the point estimate, as well
as several approaches for constructing CIs to assess the precision and reliability of the
estimated parameter.

2.1. The Rani and the XRani Distributions

The Rani distribution is derived as a mixture of the exponential and gamma distribu-
tions, with specific mixing probabilities applied to combine the two. In this formulation,
the gamma distribution is defined with a rate parameter, denoted as θ, and a shape pa-
rameter set to 5. Let X denote a random variable that follows the Rani distribution with
parameter θ. The probability density function (PDF) of the Rani distribution can be de-
rived using a mixed model comprising two components, each weighted by their respective
mixing probabilities, as follows:

fRani(x; θ) = p · fExp(x; θ) + (1− p) · fGam(x; θ, 5), (2.1)

where fExp(x; θ) = θe−θx is the PDF of the exponential distribution with rate θ and
fGam(x; θ, 5) is the PDF of the gamma distribution with shape parameter 5 and rate pa-
rameter θ and the mixing proportion is p = θ5/(θ5+24). The PDF of the Rani distribution
is expressed as follows:

fRani(x; θ) =
θ5

θ5 + 24

(
θ + x4

)
e−θx, x > 0, θ > 0,

Figure 1 illustrates the pdf plot of the Rani distribution for various parameter values.
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Figure 1. The PDF plot of the Rani distribution for different parameter
settings.

Etaga et al. [11] introduced the XRani distribution, a one-parameter probability distri-
bution developed as a more flexible extension of the Rani distribution. LetX ∼ XRani(θ).
The XRani distribution is defined as

fXRani(x; θ) = p · fExp(x; θ) + (1− p) · fRani(x; θ),

where fExp(x; θ) = θe−θx is the PDF of the exponential distribution with rate θ and
fRani(x; θ) is the PDF of the Rani distribution, given in Equation 2.1 and the mixing
proportion is p = θ5/(θ5 + 24). The PDF of the XRani distribution is mathematically
defined in the equation below

fXRani(x; θ) =
θ5

(θ5 + 24)
2 (θ

6 + 48θ + 24x4)e−θx, x > 0, θ > 0.
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Figure 2. The PDF plot of the XRani distribution for different param-
eter settings.

Figures 1 and 2 demonstrate that the Rani and XRani distributions can take various
shapes, including monotonic and unimodal forms. This one-parameter flexibility enables
it to model skewed and heavy-tailed data effectively, making it a simple yet powerful tool
for practical applications.

Some key statistical properties of the XRani distribution are outlined below, including
the rth moment, mean, variance, survival function, and hazard function. The rth moment
of a random variable X following the XRani distribution is given by

µ′
r = E(Xr) =

θ−r
{
24(r + 4)! + θr+10 + 480θr+5

}
(θ5 + 24)2

; r = 1, 2, . . .

The mean (µ) and variance (σ2) of the XRani distribution are given by

µ =
2880 + 48θ5 + θ10

θ (24 + θ5)
2 ,

and

σ2 =
17280− 2880θ + 96θ5 − 48θ6 + 2θ10 − θ11

θ2(24 + θ5)2
.
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The skewness coefficient (ζ), kurtosis coefficient (η), and coefficient of variation (ψ) of
the XRani distribution are given as follows:

ζ =
6 (θ10 + 48θ5 + 20160) (24 + θ5)4

(1658880 + 608256θ5 + 14976θ10 + 96θ15 + θ20)
3/2

,

η =
24 (24 + θ5)6 (40320 + 48θ5 + θ10)

(1658880 + θ5(48 + θ5) (12672 + 48θ5 + θ10))
2 ,

ψ =

√
1658880 + 608256θ5 + 14976θ10 + 960θ15 + θ20

(24 + θ5)2 (2880 + 48θ5 + θ10)
.

The survival and hazard rate functions are respectively

S(x) =

{
1 +

1

(θ5 + 24)2
[
24θ4x4 + 960θ3x3 + 2880θ2x2 + 5760x

]}
e−θx,

and

hrf(x) =
θ11 + 480θ6 + 240θ5x4

θ10 + 480θ5 + 576 + 240θ4x4 + 960θ3x3 + 2880θ2x2 + 5760x
.

Examining the structure of the XRani distribution reveals that it is a mixture of the
exponential distribution and the Rani distribution, where the latter is itself a mixture
of the exponential and gamma distributions with positive parameters. Consequently,
the tail behavior of the XRani distribution exhibits the following property: as x → ∞,
the probability density decays exponentially, approximately as e−θx. This exponential
decay indicates that the XRani distribution is light-tailed, as all moments are finite.
Therefore, the probability of observing extreme values is much lower compared to heavy-
tailed distributions such as the Pareto or Cauchy.

2.2. Point Parameter Estimation

The point estimator for the parameter of the XRani distribution can be derived using
the maximum likelihood (ML) method. This approach involves constructing the likeli-
hood function based on a given sample and then determining the parameter value that
maximizes this function, as outlined in the following steps.

Step 1: Find the likelihood function
The likelihood function L(θ;xi) represents the joint probability of observing a random

sample drawn from the XRani distribution. It is defined as:

L(θ;xi) =

(
θ5

(θ5 + 24)
2

)n

·
n∏

i=1

(θ6 + 48θ + 24x4i ) · e
−θ

n∑
i=1

xi

.

Step 2: Find the log-likelihood function
Due to the mathematical complexity involved in directly differentiating the likelihood

function, the log-likelihood function is employed to facilitate the differentiation process.
The log-likelihood function is given by

logL(θ;xi) = n log

(
θ5

(θ5 + 24)
2

)
+

n∑
i=1

log
(
θ6 + 48θ + 24x4i

)
− θ

n∑
i=1

xi.

Step 3: Differentiate the log-likelihood function
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To determine the value of θ that maximizes the log-likelihood function, the derivative
of logL(θ;xi) with respect to θ is computed. This yields the score function S(θ;xi), which
is expressed as follows:

S(θ;xi) =
∂

∂θ
logL(θ;xi)

=
∂

∂θ

[
5n log(θ)− 2n log

(
θ5 + 24

)
+

n∑
i=1

log
(
θ6 + 48θ + 24x4i

)
− θ

n∑
i=1

xi

]

=
5n

θ
− 10nθ4

θ5 + 24
+

n∑
i=1

6θ5 + 48

θ6 + 48θ + 24x4i
−

n∑
i=1

xi.

Step 4: Set the derivative equal to zero and solve for the ML estimator

The value of θ is obtained by solving the equation S(θ;xi)
set
= 0, which involves setting

the score function to zero:

S(θ;xi) =
5n

θ
− 10nθ4

θ5 + 24
+

n∑
i=1

6θ5 + 48

θ6 + 48θ + 24x4i
−

n∑
i=1

xi
set
= 0.

This process identifies the critical points that may correspond to potential maxima of
the log-likelihood function. Given the absence of a closed-form solution for the maximum
likelihood (ML) estimator of the parameter, numerical iterative methods are employed to
address the resulting non-linear optimization problem [21]. In this study, ML estimation
was conducted using the Newton-Raphson method, as implemented through the maxLik
package [15] in RStudio.

2.3. Confidence Intervals

This section presents four approaches for constructing confidence intervals (CIs) for
the parameter of the XRani distribution: the likelihood-based CI, the Wald-type CI, the
bootstrap-t CI, and the bias-corrected and accelerated (BCa) bootstrap CI.

Likelihood-based Confidence Interval
The likelihood-based CI is a fundamental statistical technique used for parameter esti-

mation. Central to this method is the likelihood function, which quantifies the probability
of observing the data under a specified statistical model with given parameter values. The
core idea is to identify a range of parameter values that maximize the likelihood while
satisfying a predefined confidence level. This is achieved by maximizing the log-likelihood
function with respect to the parameter of interest.

The ML estimator, denoted by θ̂, is obtained by solving the score equation:

S(θ;xi)
set
= 0.

This estimator represents the parameter value most consistent with the observed data.
Once the ML estimate is obtained, a likelihood-based CI is constructed around it. This
method utilizes the likelihood ratio, defined as

λ(θ) =
L(θ;x)

L(θ̂;x)
.

Under regularity conditions, Wilks theorem states that −2 log λ(θ) asymptotically fol-
lows a chi-square distribution with degrees of freedom equal to the number of parameters
estimated (typically 1 in this context) [26]. Thus, the likelihood-based CI for θ at a
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(1− α)100% confidence level is given by{
θ
∣∣∣−2 log L(θ;x)

L(θ̂;x)
≤ χ2

1−α,1

}
=

θ
∣∣∣∣∣∣−2 log

 θ5n(θ̂5+24)
2n

θ̂5n(θ5+24)2n
·

n∏
i=1

(θ6+48θ+24x4
i )

n∏
i=1

(θ̂6+48θ̂+24x4
i )
exp

(
−θ

n∑
i=1

xi + θ̂
n∑

i=1

xi

) ≤ χ2
1−α,1

 ,

where χ2
1−α,1 is the critical value from the chi-square distribution with one degree of

freedom.
For the XRani distribution, constructing the likelihood-based CI poses additional chal-

lenges due to the composite nature of the distribution. The inclusion of a gamma com-
ponent with both shape and rate parameters increases the complexity of the likelihood
function. To address this, numerical optimization methods are employed.

In this study, the ML estimator for the XRani distribution parameter was obtained
using Brents root-finding algorithm. Given that:

f(θ) = S(θ;xi) =
5n

θ
− 10nθ4

θ5 + 24
+

n∑
i=1

6θ5 + 48

θ6 + 48θ + 24x4i
−

n∑
i=1

xi
set
= 0.

Brents method was used to solve for θ such that f(θ) = 0. This algorithm integrates
the robustness of bracketing methods—ensuring convergence—with the efficiency of open
methods such as inverse quadratic interpolation. When the product f(a) · f(b) < 0, the
method begins with bisection to ensure reliability and then dynamically switches between
interpolation techniques, depending on the curvature and interval behavior. Specifically,
it alternates between inverse quadratic interpolation and the secant method (linear inter-
polation) to refine the root estimate iteratively:

θsecond = θn − f(θn)
θn − θn−1

f(θn)− f(θn−1)
,

and secant technique (linear interpolation):

θquad =
f(θn−1)f(θn−2)

(f(θn)− f(θn−1)) (f(θn)− f(θn−2))
θn + . . .

The likelihood-based CI employs an iterative process to improve the root estimate by
alternating between multiple numerical methods. This approach enhances the stability
and accuracy of the estimate [17].

Figure 3 illustrates the plot of the log-likelihood function versus θ (solid blue line), the
ML estimate (dashed red line), and the 95% likelihood-based CI (solid green line) for a
simulated sample of size 20 from the XRani distribution with θ = 1.
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Figure 3. The plot of −2 log λ(θ) versus θ.

Wald-type Confidence Interval
The Wald-type CI for estimating the parameter of the XRani distribution is derived

from the ML estimator, denoted by θ̂. This CI is constructed using a second-order Taylor

series expansion of the log-likelihood function logL(θ;x) around θ̂. The approximation
relies on the Wald statistic, which is based on the second derivative of the log-likelihood
function, as the first derivative vanishes at the ML estimate:

logL(θ;x) ≈ logL(θ̂;x)− 1

2
I(θ̂)(θ − θ̂)

2
,

where I(θ̂) is the observed Fisher information evaluated at θ̂. Under asymptotic condi-
tions, where the sample size is sufficiently large, the Wald statistic provides an effective
quadratic approximation to the likelihood ratio test (LRT) statistic [24]. For the XRani
distribution, the first and second derivatives of the log-likelihood function are derived as
follows:

∂

∂θ
logL(θ;xi) =

5n

θ
− 10nθ4

θ5 + 24
+

n∑
i=1

6θ5 + 48

θ6 + 48θ + 24x4i
−

n∑
i=1

xi,
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∂2

∂θ2
logL(θ;xi) = −5n

θ2
− 40nθ3

θ5 + 24
+

50nθ8

(θ5 + 24)
2 +

n∑
i=1

30θ4

θ6 + 48θ + 24x4i

−
n∑

i=1

(
6θ5 + 48

)2
(θ6 + 48θ + 24x4i )

2 .

Consequently, the observed Fisher information is estimated as:

Î(θ̂) = − ∂2

∂θ2
logL(θ;xi)

∣∣∣∣
θ=θ̂

. (2.2)

The Wald-type confidence interval for θ at a confidence level of (1− α)100% is given by(
θ̂ − z1−(α/2)

√
Î−1(θ̂), θ̂ + z1−(α/2)

√
Î−1(θ̂)

)
,

where z1−(α/2) denotes the (1− (α/2))
th

quantile of the standard normal distribution,

and Î−1(θ̂) is the inverse of the observed Fisher information given in Equation 2.2.

Bootstrap-t Confidence Interval
The bootstrap-t CI is a resampling-based method that estimates the uncertainty around

a parameter by combining the bootstrap technique with the t-distribution framework.
Unlike the traditional percentile bootstrap, the bootstrap-t method incorporates the
variability of the estimator through its standard error, thereby improving accuracy and
robustness—particularly in small sample settings or when the sampling distribution of
the estimator departs from normality [8].

This method is especially useful when the analytical form of the sampling distribution
is complex or unknown. The CI is constructed based on the empirical distribution of a
standardized statistic, also known as the bootstrap-t statistic, which approximates the
pivotal quantity used in parametric inference.

The steps for constructing a bootstrap-t CI are as follows:

Step 1: Initial Estimation
Begin by drawing a random sample X = (X1, . . . , Xn) from the population. Compute

the point estimate θ̂ of the parameter of interest (e.g., ML estimate).

Step 2: Bootstrap Sampling
Generate B = 1000 bootstrap samples, X∗

b , b = 1, 2, ..., B, by sampling with replace-
ment from the original dataset.

Step 3: Parameter Estimation for Each Sample
For each bootstrap sample X∗

b , compute the bootstrap replicate of the estimator, de-

noted as θ̂∗b .

Step 4: Construct the Bootstrap-t Statistic
For each bootstrap replicate, calculate the standardized statistic (bootstrap-t) as:

t∗b =
θ̂∗b − θ̂

ŜE
∗
b

,
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where ŜE
∗
b =

√
Î−1(θ̂∗b ) is the bootstrap estimate of the standard error of θ̂∗b , often

obtained via the observed Fisher information (see Equation 2.2), with the parameter

substituted by θ̂∗b .

Step 5: Construct the Empirical Distribution
Repeat steps 2-4 a total of B = 1000 times to obtain the empirical distribution of the

t∗b values. This distribution approximates the sampling distribution of the standardized
estimator.

Step 6: Quantile Calculation
Determine the lower and upper quantiles t∗α/2 and t∗1−α/2 corresponding to the α/2

and 1− (α/2) levels of the empirical bootstrap-t distribution. That is,

t∗α/2 = inf

{
t :

1

B

B∑
b=1

1[t∗b≤t] ≥ α/2

}
and

t∗1−(α/2) = inf

{
t :

1

B

B∑
b=1

1[t∗b≤t] ≥ 1− (α/2)

}
,

where 1[·] is the indicator function.

Step 7: Construct the Bootstrap-t Confidence Interval
The two-sided (1− α)100% bootstrap-t confidence interval is given by(

θ̂ − t∗1−(α/2) · ŜE(θ̂), θ̂ − t∗α/2 ·̂SE(θ̂)
)
,

where ŜE(θ̂) =

√
Î−1(θ̂) is the standard error of the original estimator θ̂.

Bias-corrected and accelerated (BCa) bootstrap confidence interval
The bias-corrected and accelerated (BCa) bootstrap CI is a refined extension of the

basic bootstrap approach that corrects for both bias and skewness in the empirical distri-
bution of the estimator. This method is particularly advantageous in situations involving
small sample sizes or when the distribution of the estimator is notably non-normal. It
improves interval estimation accuracy by incorporating two essential adjustments: (1) a
bias correction factor to account for the asymmetry in the proportion of bootstrap repli-
cates falling below the original estimate, and (2) an acceleration parameter that adjusts
for the curvature (skewness) in the estimators distribution [3]. Unlike standard methods
that assume normality or symmetry in the sampling distribution, the BCa method does
not require such assumptions, making it highly robust and broadly applicable.

The construction of the BCa bootstrap CI proceeds as follows:

Step 1: Initial Estimation
Draw a random sample X = (X1, . . . , Xn) from the population. Estimate the param-

eter of interest θ̂ using a suitable method, such as maximum likelihood.

Step 2: Bootstrap Resampling
Generate B = 1000 bootstrap samples X∗

b , b = 1, 2, ..., B, by sampling with replace-
ment from the original dataset.

Step 3: Bootstrap Estimation
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For each bootstrap sample, compute the bootstrap estimator θ̂∗b , yielding a distribution

of bootstrap estimates
{
θ̂∗1 , θ̂

∗
2 , ..., θ̂

∗
B

}
.

Step 4: Bias Correction Factor (z0)
Calculate the proportion p̂ of bootstrap estimates that are less than the original esti-

mate θ̂ :

p̂ =
1

B

B∑
b=1

1[θ̂∗
b<θ̂].

The bias correction factor z0 is then obtained as the standard normal quantile:

z0 = Φ−1(p̂),

where Φ−1(·) is the inverse of the standard normal cumulative distribution function.

Step 5: Acceleration Constant (a)
Estimate the acceleration constant a, which reflects the rate of change of the standard

error of the estimator with respect to the data. It is typically obtained using the jackknife
method:

a =

n∑
i=1

(
θ̄(·) − θ̂(i)

)3
6

[
n∑

i=1

(
θ̄(·) − θ̂(i)

)2]3/2 ,
where θ̂(i) is the leave-one-out estimate, and θ̄(·) is their average.

Step 6: Adjusted Percentiles
The corrected quantiles α1 and α2 for the confidence interval are calculated as:

α1 = Φ

(
z0 +

z0 + zα/2

1− a(z0 + zα/2)

)
and α2 = Φ

(
z0 +

z0 + z1−(α/2)

1− a(z0 + z1−(α/2))

)
,

where zα/2 and z1−α/2 are the (α/2)
th

and (1− (α/2))
th

quantiles of the standard normal
distribution, respectively.

Step 7: BCa Bootstrap Confidence Interval Construction
Finally, the two-sided (1−α)100% BCa bootstrap CI is constructed using the adjusted

percentiles α1 and α2 as:(
θ̂∗(α1)

, θ̂∗(α2)

)
,

where θ̂∗(α1)
and θ̂∗(α2)

are (α1)
th

and (α2)
th

quantiles of of the sorted bootstrap estimates

θ̂∗b .
This study did not investigate Bayesian credible intervals for the XRani distribution

due to both methodological and practical considerations. First, the XRani distribution
is relatively new and does not yet have well-established conjugate or informative priors
in the literature. The choice of a prior distribution is a critical step in Bayesian anal-
ysis, as it can substantially influence posterior inference [12]. Developing and justifying
such priors for the XRani distribution would require a separate methodological study.
Second, the likelihood function of the XRani distribution involves a mixture structure
with polynomial and exponential terms, making the posterior analytically intractable.
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As a result, Bayesian credible intervals would require computationally intensive simula-
tion techniques such as Markov Chain Monte Carlo (MCMC) [25], along with careful
convergence diagnostics [4], which are beyond the scope of the present research. Since the
primary objective of this work is to compare frequentist CI procedures—likelihood-based,
Wald-type, bootstrap-t, and BCa bootstrap—under both simulated and real-world data
situations, we focused exclusively on methods consistent with this framework. Future
work may explore Bayesian inference for the XRani distribution, especially in contexts
where informative priors can be elicited from domain expertise or historical data.

In the case of the XRani distribution, which involves a single parameter θ, the profile
likelihood CI is mathematically equivalent to the likelihood-based CI because the profiling
process over nuisance parameters is unnecessary. As a result, both approaches yield
identical interval estimates [24].

3. Simulation Studies and Results

This study proposes 95% two-sided confidence intervals (CIs) for the parameter of
the XRani distribution, constructed using four distinct methods: likelihood-based, Wald-
type, bootstrap-t, and bias-corrected and accelerated (BCa) bootstrap. The efficiency
and reliability of these methods were systematically evaluated through a Monte Carlo
simulation study implemented in RStudio, under a range of controlled scenarios.

The performance of the proposed CIs was assessed using two key metrics: empirical
coverage probability (ECP) and average width (AW), with the number of bootstrap repli-
cates fixed at B = 2,000. The considered sample sizes were n = 10, 20, 30, 50, 100, 200,
300, and 500. Although n = 10 represents a challenging estimation scenario, its inclusion
enables an evaluation of method robustness under extreme small-sample conditions. The
initial analysis focused on n = 200, representative of typical moderate-scale field studies.
To examine asymptotic behavior, an additional simulation with n = 500 was conducted,
which confirmed the stability and convergence trends observed in earlier settings.

The true parameter values θ of the XRani distribution were set to 0.20, 0.30, 0.50,
0.75, 1.00, 1.50, 2.00, and 2.50. For each combination of sample size and parameter value,
the simulation was repeated 2,000 times to ensure robustness and statistical validity.

The simulation results, as summarized in Table 1 and 2 and visualized in Figures 4 and
5, provide a detailed comparative evaluation of the ECPs and AWs of four competing 95%
two-sided CI estimation methods for the parameter of the XRani distribution: likelihood-
based, Wald-type, bootstrap-t, and BCa bootstrap. Across all parameter values and
sample sizes, the likelihood-based and Wald-type CIs demonstrated superior performance
in terms of coverage accuracy, with ECPs consistently aligning with or slightly exceeding
the nominal confidence level of 0.95. These two methods remained particularly robust as
the sample size increased, showing a convergence of ECPs toward the nominal level even
at moderate sample sizes such as n = 30.

In contrast, the bootstrap-t and BCa bootstrap methods exhibited notably lower ECPs
at smaller sample sizes (n = 10, 20, 30) frequently underestimating the nominal confidence
level. This undercoverage highlights the sensitivity of these resampling-based methods to
limited data, especially in the presence of distributional skewness or kurtosis. However,
as the sample size increased to n = 100 and n = 200, the performance of both boot-
strap methods improved substantially, with their ECPs gradually converging to levels
comparable with those of the likelihood-based and Wald-type CIs. This suggests that
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bootstrap-based CIs are asymptotically valid but may be unreliable for small samples
unless corrections or alternatives are applied.

With respect to AW, the simulation results revealed a clear trend: as the true parameter
value increased, so did the width of the CIs, which is expected due to increased uncertainty
in estimation at higher parameter levels. Among the four methods, the bootstrap-t and
BCa bootstrap CIs consistently yielded narrower intervals compared to the likelihood-
based and Wald-type approaches. This reflects a potential trade-off between precision
and reliability—while narrower intervals imply greater efficiency, they were also associated
with lower ECPs, particularly at small sample sizes.

Overall, the simulation results underscore several key insights: The likelihood-based
and Wald-type methods are preferable for maintaining nominal coverage, especially in
small to moderate samples. The bootstrap-t and BCa methods may offer narrower inter-
vals, but at the cost of reduced coverage reliability unless sufficiently large sample sizes
are used. For high parameter values or skewed distributions, likelihood-based inference
remains the most robust, with the BCa bootstrap method showing improved performance
in larger samples due to its bias and skewness adjustments. These findings support the
use of hybrid approaches that leverage the flexibility of bootstrap resampling while incor-
porating asymptotic corrections to enhance coverage properties.

Table 1. Empirical coverage probability and average width of the 95%
two-sided CIs for the parameter of the XRani distribution (θ = 0.20,
0.30, 0.50, and 0.75)

θ n Empirical Coverage Probability Average Width

Likelihood Wald Boot-t BCa Likelihood Wald Boot-t BCa

0.20 10 0.9585 0.9630 0.9095 0.9110 0.1143 0.1140 0.1021 0.1050
20 0.9445 0.9475 0.9255 0.9190 0.0804 0.0803 0.0755 0.0763
30 0.9525 0.9565 0.9265 0.9350 0.0654 0.0654 0.0612 0.0619
50 0.9620 0.9645 0.9495 0.9480 0.0502 0.0502 0.0476 0.0479
100 0.9530 0.9565 0.9355 0.9340 0.0356 0.0356 0.0333 0.0334
200 0.9440 0.9420 0.9365 0.9375 0.0249 0.0249 0.0243 0.0243
300 0.9450 0.9475 0.9370 0.9340 0.0204 0.0204 0.0198 0.0198
500 0.9570 0.9570 0.9535 0.9560 0.0157 0.0157 0.0154 0.0154

0.30 10 0.9575 0.9625 0.9015 0.9025 0.1719 0.1716 0.1530 0.1579
20 0.9550 0.9615 0.9250 0.9265 0.1208 0.1207 0.1136 0.1152
30 0.9635 0.9690 0.9380 0.9455 0.0971 0.0970 0.0912 0.0918
50 0.9620 0.9635 0.9345 0.9315 0.0755 0.0754 0.0683 0.0686
100 0.9625 0.9620 0.9465 0.9450 0.0531 0.0531 0.0496 0.0498
200 0.9560 0.9600 0.9470 0.9460 0.0376 0.0376 0.0362 0.0363
300 0.9625 0.9665 0.9490 0.9500 0.0305 0.0305 0.0289 0.0290
500 0.9590 0.9610 0.9560 0.9540 0.0235 0.0235 0.0234 0.0235
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θ n Empirical Coverage Probability Average Width

Likelihood Wald Boot-t BCa Likelihood Wald Boot-t BCa

0.50 10 0.9550 0.9590 0.8960 0.9105 0.2808 0.2806 0.2494 0.2553
20 0.9530 0.9590 0.9145 0.9220 0.1966 0.1965 0.1863 0.1880
30 0.9665 0.9675 0.9360 0.9365 0.1603 0.1603 0.1472 0.1479
50 0.9435 0.9500 0.9285 0.9205 0.1270 0.1270 0.1191 0.1194
100 0.9535 0.9525 0.9400 0.9420 0.0878 0.0878 0.0826 0.0829
200 0.9575 0.9610 0.9480 0.9475 0.0623 0.0622 0.0590 0.0590
300 0.9425 0.9480 0.9345 0.9340 0.0509 0.0509 0.0492 0.0493
500 0.9575 0.9565 0.9520 0.9530 0.0391 0.0391 0.0386 0.0387

0.75 10 0.9470 0.9460 0.8885 0.8865 0.4027 0.4046 0.3646 0.3636
20 0.9510 0.9480 0.9125 0.9155 0.2839 0.2845 0.2611 0.2601
30 0.9425 0.9480 0.9200 0.9125 0.2354 0.2357 0.2241 0.2233
50 0.9590 0.9580 0.9350 0.9405 0.1799 0.1801 0.1725 0.1723
100 0.9470 0.9485 0.9340 0.9310 0.1272 0.1272 0.1226 0.1227
200 0.9555 0.9580 0.9440 0.9410 0.0900 0.0901 0.0858 0.0858
300 0.9505 0.9540 0.9445 0.9440 0.0733 0.0733 0.0723 0.0724
500 0.9620 0.9600 0.9540 0.9520 0.0565 0.0565 0.0555 0.0557

Table 2. Empirical coverage probability and average width of the 95%
two-sided CIs for the parameter of the XRani distribution (θ = 1.00,
1.50, 2.00, and 2.50)

θ n Empirical Coverage Probability Average Width

Likelihood Wald Boot-t BCa Likelihood Wald Boot-t BCa

1.00 10 0.9620 0.9570 0.9025 0.8920 0.4807 0.4839 0.4382 0.4347
20 0.9580 0.9560 0.9265 0.9185 0.3433 0.3445 0.3210 0.3186
30 0.9475 0.9475 0.9300 0.9260 0.2807 0.2815 0.2673 0.2654
50 0.9455 0.9460 0.9305 0.9275 0.2164 0.2168 0.2089 0.2079
100 0.9520 0.9530 0.9430 0.9395 0.1539 0.1540 0.1480 0.1477
200 0.9405 0.9410 0.9385 0.9355 0.1088 0.1088 0.1086 0.1086
300 0.9515 0.9505 0.9395 0.9390 0.0887 0.0887 0.0886 0.0886
500 0.9615 0.9615 0.9500 0.9475 0.0687 0.0687 0.0650 0.0651

1.50 10 0.9490 0.9585 0.8970 0.9365 0.5800 0.5739 0.5238 0.5841
20 0.9540 0.9560 0.9315 0.9415 0.4022 0.4004 0.3768 0.3916
30 0.9530 0.9550 0.9380 0.9495 0.3271 0.3262 0.3148 0.3235
50 0.9575 0.9600 0.9400 0.9465 0.2528 0.2524 0.2450 0.2488
100 0.9530 0.9550 0.9550 0.9535 0.1779 0.1778 0.1769 0.1785
200 0.9440 0.9455 0.9400 0.9390 0.1259 0.1259 0.1227 0.1235
300 0.9590 0.9585 0.9445 0.9520 0.1022 0.1021 0.0987 0.0991
500 0.9515 0.9500 0.9415 0.9435 0.0791 0.0791 0.0775 0.0777
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θ n Empirical Coverage Probability Average Width

Likelihood Wald Boot-t BCa Likelihood Wald Boot-t BCa

2.00 10 0.9460 0.9690 0.8985 0.8825 1.1259 1.0570 0.8711 1.2383
20 0.9530 0.9725 0.9245 0.9385 0.6781 0.6559 0.5859 0.6949
30 0.9525 0.9670 0.9280 0.9450 0.5288 0.5178 0.4765 0.5305
50 0.9560 0.9630 0.9345 0.9530 0.3989 0.3942 0.3746 0.3985
100 0.9500 0.9545 0.9430 0.9490 0.2753 0.2738 0.2662 0.2741
200 0.9630 0.9665 0.9610 0.9615 0.1913 0.1908 0.1865 0.1892
300 0.9510 0.9530 0.9425 0.9455 0.1551 0.1549 0.1513 0.1530
500 0.9480 0.9485 0.9490 0.9525 0.1192 0.1191 0.1184 0.1193

2.50 10 0.9510 0.9585 0.9095 0.8135 2.4297 2.3545 1.9336 2.3810
20 0.9500 0.9570 0.9325 0.8640 1.5059 1.4588 1.2970 1.4342
30 0.9560 0.9645 0.9405 0.8960 1.1636 1.1303 1.0328 1.1134
50 0.9505 0.9615 0.9450 0.9180 0.8537 0.8347 0.7801 0.8258
100 0.9515 0.9620 0.9430 0.9355 0.5663 0.5583 0.5333 0.5546
200 0.9460 0.9465 0.9365 0.9390 0.3871 0.3842 0.3740 0.3828
300 0.9525 0.9540 0.9475 0.9485 0.3132 0.3115 0.3045 0.3096
500 0.9490 0.9495 0.9455 0.9470 0.2409 0.2401 0.2367 0.2398
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Figure 4. Plots of the ECPs of the CIs for the parameter of the XRani
distribution.
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Figure 5. Plots of the AWs of the CIs for the parameter of the XRani
distribution

4. Real Data Applications

To demonstrate the practical applicability of the CI estimation methods for the param-
eter of the XRani distribution, we applied them to two real data sets. The suitability of
the XRani distribution was further evaluated by comparing its performance with fourteen
alternative distributions. All these PDFs are defined for x > 0 and are characterized by
a single parameter θ > 0:

(1) The Akash distribution [29]

f(x; θ) =
θ3

θ2 + 2
(1 + x2)e−θx.

(2) The Akshaya distribution [35]

f(x; θ) =
θ4

θ3 + 3θ2 + 6θ + 6
(1 + x)

3
e−θx.

(3) The Amarendra distribution [31]

f(x; θ) =
θ4

θ3 + θ2 + 2θ + 6
(1 + x+ x2 + x3)e−θx.
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(4) The Sujatha distribution [32]

f(x; θ) =
θ3

θ2 + θ + 2

(
1 + x+ x2

)
e−θx.

(5) The Shanker distribution [28]

f(x; θ) =
θ2

θ2 + 1
(θ + x)e−θx.

(6) The Adya distribution [40]

f(x; θ) =
θ3

θ4 + 2θ2 + 2
(θ + x)

2
e−θx.

(7) The Garima distribution [33]

f(x; θ) =
θ

θ + 2
(1 + θ + θx) e−θx.

(8) The Komal distribution [38]

f(x; θ) =
θ2

θ2 + θ + 1
(1 + θ + x) e−θx.

(9) The Ishita distribution [36]

f(x; θ) =
θ3

θ3 + 2
(θ + x2) e−θx.

(10) The Iwok-Nwikpe distribution [16]

f(x; θ) =
θ3

θ + 2
(x2 + x) e−θx.

(11) The Pratibha distribution [39]

f(x; θ) =
θ3

θ3 + θ + 2
(θ + x+ x2) e−θx.

(12) The Chris-Jerry distribution [23]

f(x; θ) =
θ2

θ + 2
(1 + θx2) e−θx.

(13) The Lindley distribution [14]

f(x; θ) =
θ2

θ + 1
(1 + x)e−θx.

(14) The exponential distribution

f(x; θ) = θ e−θx.
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4.1. Daily Average PM2.5 Concentrations in Bang Kapi District

The data consist of daily average PM2.5 concentrations (in µg/m3) recorded in Bang
Kapi District, Bangkok,from January to April 2024, provided by the Thai Meteorological
Department. The dataset comprises 91 observations as follows:

28.2, 25.8, 26.3, 31.1, 30.1, 33.9, 34.8, 39.6, 57.4, 48.7, 36.0, 26.1, 28.3, 34.5, 27.3, 33.6,
36.2, 41.5, 48.5, 50.3, 35.8, 38.2, 50.4, 24.7, 24.1, 32.7, 45.0, 50.3, 37.1, 61.1, 64.0, 37.0,
23.8, 24.0, 26.0, 31.5, 24.9, 25.1, 21.9, 20.8, 36.3, 35.2, 55.5, 71.0, 76.6, 57.1, 30.2, 23.3,
17.7, 14.7, 12.7, 13.1, 13.6, 13.7, 16.0, 17.1, 27.6, 36.4, 22.0, 17.9, 21.1, 25.1, 24.3, 23.2,
20.9, 19.6, 24.0, 20.9, 19.9, 17.4, 32.8, 26.2, 20.7, 19.7, 18.4, 18.7, 18.4, 25.5, 26.5, 34.4,
50.2, 40.3, 17.1, 19.6, 20.0, 17.0, 18.2, 17.1, 21.0, 13.2, 13.3.

Descriptive statistics for this dataset are summarized in Table 3, while Figure 6 provides
visual representations, including a histogram, Box and Whisker plot, kernel density plot,
and violin plot, effectively highlighting the datasets positive skewness.

Table 3. Descriptive statistics for the PM2.5 concentrations in Bang
Kapi District

Sample Sizes Minimum Q1 Median Mean Q3 Maximum St.Dev

91 12.70 19.95 26.00 29.99 36.10 76.60 13.7117
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Figure 6. Visual representations of the PM2.5 concentration data in
Bang Kapi District: (a) Histogram, (b) Box and Whisker plot, (c) Kernel
density plot, and (d) Violin plot.
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The parameter of the XRani distribution was estimated using the ML estimation
method. Subsequently, four types of 95% CIs for the distribution parameter were con-
structed, namely: likelihood-based CI, Wald-type CI, bootstrap-t CI, and BCa bootstrap
CI.

A comprehensive evaluation was performed using multiple criteria, including the log-
likelihood (log(L̂)), the Akaike information criterion (AIC), and the Bayesian information
criterion (BIC), referred to as the Schwarz information criterion. These criteria allowed
for an objective assessment of model adequacy across the different distributions. The AIC
and BIC are defined as:

AIC = 2k − 2 log L̂ and BIC = 2k log(n)− 2 log L̂,

where k represents the number of estimated parameters in the model and L̂ denotes
the maximized value of the likelihood function for the model. A distribution with lower
AIC and BIC values is generally preferred, as these statistics indicate a better balance
between model fit and complexity. Table 4 provides the parameter estimates, along with
their corresponding standard errors (SEs) and goodness-of-fit measures, for the dataset
under investigation.

Table 4. Comparative analysis of model fit statistics for different dis-
tributions applied to PM2.5 concentration data in Bang Kapi district

Distribution Estimate (SE) LogLik AIC BIC

XRani 0.1667 (0.0078) -354.684 711.367 713.878
Akash 0.0997 (0.0060) -362.567 727.133 729.644
Akshaya 0.1291 (0.0068) -358.222 718.444 720.955
Amarendra 0.1318 (0.0069) -357.411 716.821 719.332
Aradhana 0.0968 (0.0059) -364.152 730.304 732.815
Sujatha 0.0982 (0.0059) -363.413 728.825 731.336
Adya 0.0996 (0.0060) -362.467 726.934 729.445
Garima 0.0523 (0.0047) -391.971 785.942 788.452
Komal 0.0645 (0.0048) -376.033 754.066 756.577
Ishita 0.1000 (0.0060) -362.309 726.618 729.129
Iwok-Nwikpe 0.0985 (0.0060) -363.152 728.305 730.816
Pratibha 0.0984 (0.0060) -363.178 728.356 730.867
Chris-Jerry 0.0979 (0.0060) -365.017 732.033 734.544
Lindley 0.0665 (0.0049) -375.971 753.942 756.452
Exponential 0.0333 (0.0035) -400.476 802.951 805.462

Note. Bold values indicate the best-fitting model based on minimum AIC and BIC values.

Table 4 presents the log-likelihood values along with the AIC and BIC for the XRani
distribution and fourteen alternative distributions fitted to the PM2.5 concentration data.
Among the compared distributions, the XRani distribution exhibited the best overall fit,
as indicated by the lowest AIC and BIC values.

A goodness-of-fit test was conducted using the KolmogorovSmirnov (KS) statistic [7]
to assess whether the PM2.5 concentration data in Bang Kapi District follow the XRani
distribution. The test yielded a KS statistic of 0.0971 and a p-value of 0.3572. Since the
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p-value exceeds the 0.05 significance level, there is insufficient evidence to reject the null
hypothesis, indicating that the XRani distribution provides an adequate fit to the data.

Furthermore, the ProbabilityProbability (PP) plot in Figure 7 compares the empir-
ical cumulative distribution function (CDF) of the observed data with the theoretical
CDF of the XRani distribution based on the estimated parameter. The plotted points
lie closely along the 45-degree reference line, indicating good agreement between the em-
pirical and theoretical distributions. This visual evidence supports the adequacy of the
XRani distribution in modeling the given dataset.
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Figure 7. P–P plot of the PM2.5 concentration data in Bang Kapi District.

The ML estimate of the XRani distribution parameter was 0.1667. To further assess the
uncertainty associated with the parameter estimate, Table 5 reports the 95% two-sided
CIs for the XRani distribution parameter, constructed using four different methods. The
likelihood-based method produced a 95% CI of (0.1519, 0.1825), with an interval width of
0.0306. The Wald-type method yielded a similar interval, ranging from 0.1514 to 0.1820,
with the same width of 0.0306. In contrast, the bootstrap-t and BCa bootstrap methods
resulted in slightly wider intervals—(0.1514, 0.1832) and (0.1506, 0.1819), respectively.

These findings demonstrate not only the suitability of the XRani distribution for model-
ing PM2.5 concentrations but also the advantages of using likelihood-based and Wald-type
methods for interval estimation, particularly in moderate sample settings.
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Table 5. The 95% and 99% two-sided CIs and corresponding widths
for the XRani parameter based on PM2.5 data in Bang Kapi District

CI Method
95% CI 99% CI

Interval Width Interval Width

Likelihood-based (0.1519, 0.1825) 0.0306 (0.1474, 0.1877) 0.0403
Wald-type (0.1514, 0.1820) 0.0306 (0.1466, 0.1869) 0.0403
Bootstrap-t (0.1514, 0.1832) 0.0318 (0.1483, 0.1865) 0.0382
BCa bootstrap (0.1506, 0.1819) 0.0313 (0.1468, 0.1878) 0.0410

4.2. Daily Average PM2.5 Concentrations in Phaya Thai District

Ninety-one daily mean PM2.5 measurements (µg/m3) taken in Phaya Thai District,
Bangkok, during JanuaryApril 2024 were obtained from the Thai Meteorological Depart-
ment. The following are the recorded data:

22.0, 21.4, 21.4, 22.9, 20.6, 25.9, 25.1, 28.9, 39.9, 29.6, 24.1, 20.4, 21.2, 27.2, 22.0, 22.8,
28.8, 33.1, 40.5, 33.0, 27.4, 30.1, 38.0, 19.1, 20.4, 24.8, 33.2, 36.6, 30.8, 49.3, 44.3, 24.4,
19.4, 19.4, 21.3, 26.5, 22.7, 19.3, 18.6, 17.1, 28.5, 28.6, 45.2, 50.3, 53.3, 42.7, 24.2, 19.0,
15.1, 14.0, 10.9, 12.8, 12.6, 12.3, 15.0, 14.9, 21.9, 28.3, 17.4, 16.4, 16.8, 20.3, 20.4, 20.1,
19.2, 16.2, 21.6, 18.0, 18.8, 14.0, 29.3, 23.5, 18.9, 17.8, 16.3, 16.1, 16.3, 20.2, 24.3, 27.8,
33.5, 39.2, 15.7, 18.9, 20.2, 16.7, 15.5, 14.8, 21.6, 13.6, 12.6.

Summary measures of the dataset are presented in Table 6, and the distributional
characteristics are illustrated in Figure 8, which reveals a noticeable right-skewed pattern
in the data.

Table 6. Descriptive statistics for the PM2.5 concentrations in Phaya
Thai District

Sample Sizes Minimum Q1 Median Mean Q3 Maximum St.Dev

91 10.90 17.60 21.40 23.90 28.40 53.30 9.1891

Model adequacy was thoroughly examined using various indicators, such as the log-
likelihood (log(L̂)), along with information-based metrics including AIC and BIC. As
shown in Table 7, the estimated parameters, their standard errors (SEs), and relevant
model evaluation metrics are presented for the given dataset.
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Figure 8. Visual representations of the PM2.5 concentration data in
Phaya Thai District: (a) Histogram, (b) Box andWhisker plot, (c) Kernel
density plot, and (d) Violin plot

Table 7. Comparative analysis of model fit statistics for different dis-
tributions applied to PM2.5 concentration data in Phaya Thai District

Distribution Estimate (SE) LogLik AIC BIC

XRani 0.2092 (0.0098) -324.068 650.137 652.648
Akash 0.1249 (0.0075) -337.135 676.269 678.780
Akshaya 0.1606 (0.0084) -331.103 664.206 666.716
Amarendra 0.1647 (0.0086) -329.710 661.419 663.930
Aradhana 0.1205 (0.0073) -339.429 680.857 683.368
Sujatha 0.1225 (0.0074) -338.374 678.749 681.260
Shanker 0.0833 (0.0062) -350.784 703.567 706.078
Adya 0.1247 (0.0075) -337.001 676.002 678.513
Garima 0.0658 (0.0059) -370.578 743.156 745.667
Komal 0.0802 (0.0059) -353.712 709.424 711.935
Ishita 0.1254 (0.0076) -336.711 675.422 677.933
Iwok-Nwikpe 0.1231 (0.0075) -337.943 677.886 680.397
Pratibha 0.1230 (0.0074) -337.997 677.993 680.504
Chris-Jerry 0.1223 (0.0075) -340.324 682.648 685.159
Lindley 0.0833 (0.0062) -353.597 709.195 711.705
Exponential 0.0418 (0.0044) -379.831 761.663 764.174

Note. Bold values indicate the best-fitting model based on minimum AIC and BIC values.
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The KS test was applied to evaluate the suitability of the XRani distribution for
modeling the PM2.5 concentration data in Phaya Thai District. The analysis produced
a KS statistic of 0.1132 with a corresponding p-value of 0.1939. Given that the p-value
is greater than the significant level of 0.05, the null hypothesis that the data follow the
XRani distribution cannot be rejected. This result suggests that the XRani distribution
is a plausible model for the observed data.

Moreover, the plotted points in the PP plot (Figure 9) exhibit a strong alignment with
the diagonal reference line, indicating that the XRani distribution provides a good fit to
the PM2.5 concentration data in Phaya Thai District. Although minor deviations are
present at the distribution tails, the overall pattern suggests that the XRani distribution
effectively captures the underlying structure of the data.
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Figure 9. P–P plot of the PM2.5 concentration data in Phaya Thai District.

The XRani distribution demonstrated the best fit among the candidates, evidenced by
its lowest AIC and BIC values. Its maximum likelihood estimate for the model parameter
was 0.2092. The 95% two-sided CIs for the parameter of the XRani distribution are
presented in Table 8. The CI obtained from the likelihood-based approach was (0.1905,
0.2290), corresponding to a width of 0.0385. A comparable interval was generated by
the Wald-type method, spanning from 0.1890 to 0.2284, though with a slightly broader
width of 0.0394. In contrast, both the bootstrap-t and BCa bootstrap approaches yielded
marginally narrower intervals–(0.1935, 0.2256) and (0.1935, 0.2262), respectively.
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Table 8. The 95% and 99% two-sided CIs and corresponding widths
based on PM2.5 concentration data in Phaya Thai District

CI Method
95% CI 99% CI

Interval Width Interval Width

Likelihood-based (0.1905, 0.2290) 0.0385 (0.1849, 0.2355) 0.0505
Wald-type (0.1890, 0.2284) 0.0394 (0.1839, 0.2344) 0.0505
Bootstrap-t (0.1935, 0.2256) 0.0321 (0.1882, 0.2317) 0.0435
BCa bootstrap (0.1935, 0.2262) 0.0327 (0.1880, 0.2317) 0.0437

The observed performance of the CI methods in the analysis of real environmental
data aligns well with the simulation findings, thus providing empirical support for the
methodological conclusions drawn from the Monte Carlo study.

These findings are consistent with previous empirical studies of PM2.5 in Northern
Thailand, such as those by Thangjai et al. [41] and Chankham et al. [6], which also
utilized distributional methods for environmental data modeling.

Upon estimating the CI for the XRani distribution parameter, it can be easily converted
into the appropriate CI for the mean PM2.5 concentration, according to the established
analytical link between the parameter and the mean. This interval measures the range
of credible average PM2.5 concentrations in the population, considering sampling vari-
ability. This information is crucial for environmental authorities and policymakers, since
it facilitates evidence-based choices on air quality management. If the upper limit of
the mean PM2.5 CI approaches or surpasses specified safety standards, it would indicate
the necessity for proactive mitigation efforts, enhanced emissions regulations, or public
health advisories. Narrower intervals that stay within acceptable limits can facilitate the
deployment of resources to other urgent environmental concerns while ensuring continuous
monitoring.

5. Conclusions

This paper proposed and evaluated four distinct methods for constructing two-sided
confidence intervals (CIs) for the parameter of the XRani distribution: the likelihood-
based, Wald-type, bootstrap-t, and bias-corrected and accelerated (BCa) bootstrap ap-
proaches. An explicit analytical expression was derived for the Wald-type CI to facilitate
practical implementation. Extensive Monte Carlo simulation studies were conducted to
examine the performance of these CIs under varying sample sizes and parameter values.
The evaluation was based on empirical coverage probability (ECP) and average width
(AW) as key performance metrics. Based on both simulation and real-world analysis, the
likelihood-based and Wald-type CIs consistently demonstrated high reliability, achiev-
ing ECPs close to the nominal 0.95 level across most scenarios, especially with small to
moderate sample sizes. In contrast, the bootstrap-t and BCa bootstrap methods yielded
narrower intervalsindicating greater precisionbut were prone to undercoverage in small
samples or under higher parameter values. However, their performance improved notably
with larger sample sizes.

The practical utility of these methods was further validated using daily PM2.5 con-
centration data from Bang Kapi and Phaya Thai Districts in Bangkok, where the XRani
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distribution demonstrated the most suitable fit among fourteen candidate distributions
based on AIC and BIC. To further assess the goodness-of-fit beyond AIC and BIC, we
plotted the probabilityprobability (PP) plots for the XRani distribution. The PP plots
revealed that the XRani distribution’s empirical cumulative distribution function (ECDF)
aligned most closely with the theoretical CDF, supporting its fit to the PM2.5 data in
both Bang Kapi and Phaya Thai districts. These graphical assessments complement the
information-theoretic criteria and strengthen the evidence for the XRani distributions
suitability.

The CIs constructed from these real datasets aligned with the simulation findings.
Overall, the likelihood-based method is recommended for applications requiring accurate
coverage and computational stability, while the BCa bootstrap method may be suitable
when narrower intervals are desired and sufficient data are available.

6. Recommendations

In practice, the choice of CI method should be guided by data characteristics, com-
putational resources, and the required level of accuracy. The likelihood-based method
demonstrated consistently high coverage and moderate interval width, making it a reli-
able option for most applications, especially in small to moderate samples where coverage
accuracy is essential. The Wald-type method, while computationally efficient and easy to
implement, may underperform in skewed or heavy-tailed distributions, particularly when
the sample size is small.

Bootstrap methods offer flexible alternatives. The bootstrap-t CI can be effective
when standard errors are estimable, but it requires larger sample sizes to perform well.
The BCa bootstrap method, which adjusts for both bias and skewness, is particularly
suitable for data exhibiting asymmetry or when traditional methods show undercoverage.
However, the BCa bootstrap method is computationally intensive and may require a
larger number of bootstrap replications to stabilize the interval bounds. Therefore, its
use is recommended when sufficient computing power and larger datasets are available.

Practitioners may prefer the likelihood-based method for its robust performance, while
the BCa bootstrap method may be selected in situations where accurate quantification
of uncertainty is critical and resources allow for extensive resampling.

The computational requirements of bootstrap techniques, particularly the bootstrap-t
and BCa bootstrap CIs, can present challenges when working with limited computational
resources. This is especially relevant in large-scale resampling or real-time applications.
To support the implementation of these methods in RStudio, several robust packages are
available. Among them, the ’boot’ package [5] and the ’bootstrap’ package [18] are widely
used and provide convenient functions for constructing bootstrap confidence intervals
efficiently.

The construction of accurate CIs for a distribution parameter has important implica-
tions for environmental monitoring and policy-making. For instance, in PM2.5 analysis,
precise estimation of the distributional parameter enables policymakers to quantify ex-
posure risks, set regulatory thresholds, and assess compliance with air quality standards.
CIs that are too wide may indicate the need for more extensive data collection, while
undercoverage could lead to misleading inferences that underestimate public health risks.
By providing robust and interpret able intervalsparticularly through the likelihood-based
method–this study contributes to strengthening evidence-based decision-making in urban
pollution management.
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7. Limitations

In this section, we evaluate the robustness of the CI methods to distribution mis-
specification. All simulation datasets are generated from an ε-contaminated distribution
in which a heavy-tailed distribution serves as the contaminant. This design introduces
rare but influential extremes and provides a stringent stress test for the procedures un-
der study. In this context, robustness refers to the stability of CI procedures when the
data-generating process deviates from the assumed XRani distribution.

To formalize departures from the distribution, we adopt an ε-contamination frame-
work in which observations are drawn from a twocomponent mixture: with probability
1 − ε from the target XRani distribution (the clean distribution) and with probability
ε from a contaminant distribution. Heavy-tailed contamination is of particular practical
interest because it generates rare but influential extremes that challenge asymptotic ap-
proximations and inflate sampling variability. We therefore use a Pareto contaminant to
control both the frequency of contamination (ε) and the severity of tail risk via its shape
parameter; the contaminant scale is aligned to the XRani scale for comparability.

Let X ∼ Rani(θ). We introduce contamination through a Pareto component C ∼
Pareto(xm = 1/θ, α = 1.5), and form a two-component mixture

Y =

{
X, with probability 1− ε,

C, with probability ε.

We fix ε = 0.2. The simulation results in the case of the contaminated XRani distribution
are reported in Tables 9 and 10. Under heavy-tailed contamination, none of the four CI
procedures reaches the nominal 95% coverage. Coverage is uniformly poor for smallmod-
erate θ (0.200.75), with BCa and bootstrap-t CIs consistently exceeding likelihood and
Wald CIs yet still far below 0.95. Coverage typically decreases as n increases, reflecting
CIs that become narrower around a misspecified center. For example, when θ equals 0.30,
the coverage of the BCa bootstrap CI falls from about 0.3525 at sample size 10 to about
0.1290 at sample size 500. For larger θ, likelihood-based and Wald-type CIs may appear
higher at very small n, but coverage declines most rapidly as n increases. Overall, BCa CI
demonstrates the highest coverage, succeeded by bootstrap-t CI, while likelihood-based
CI and Wald-type CI yield similar and somewhat lower coverage; however, all remain far
below the nominal confidence level, indicating that none of them is robust when the data
are contaminated by a heavy-tailed distribution.

Average width decreases with n for every interval estimation method and increases with
θ at fixed n, indicating greater inherent scale at larger θ. Bootstrap CIs are generally
wider than likelihood-based and Wald-type CIs—especially for smaller values of θ—which
corresponds with their relatively better coverage. For example, when θ is 0.50 and the
sample size is 100, the BCa bootstrap CI has coverage of about 0.3609, whereas the
likelihood-based CI reaches about 0.1359. For large θ and very small n, this pattern can
be mixed, but the dominant trend remains: AWs decrease as n grows, increase with θ,
and bootstrap CIs tend to trade greater AW for comparatively higher coverage under
contamination.
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Table 9. Empirical coverage probability and average width of the 95%
two-sided CIs for the parameter of the contaminated XRani distribution
(θ = 0.20, 0.30, 0.50, and 0.75)

θ n Empirical Coverage Probability Average Width

Likelihood Wald Boot-t BCa Likelihood Wald Boot-t BCa

0.20 10 0.1186 0.1365 0.3405 0.3770 0.2194 0.2173 0.3240 0.3432
20 0.0868 0.0920 0.3165 0.3615 0.1430 0.1424 0.2722 0.2787
30 0.0532 0.0565 0.2340 0.2925 0.1166 0.1162 0.2410 0.2461
50 0.0365 0.0375 0.2150 0.2920 0.0865 0.0865 0.2120 0.2148
100 0.0215 0.0220 0.1755 0.2590 0.0596 0.0596 0.1734 0.1750
200 0.0140 0.0140 0.1150 0.2085 0.0415 0.0415 0.1444 0.1478
300 0.0000 0.0000 0.0405 0.1185 0.0338 0.0332 0.1191 0.1277
500 0.0107 0.0110 0.1215 0.2300 0.0249 0.0244 0.1196 0.1295

0.30 10 0.0991 0.1180 0.3400 0.3525 0.3168 0.3170 0.4666 0.4754
20 0.0695 0.0760 0.2905 0.3265 0.2124 0.2125 0.3966 0.4003
30 0.0485 0.0515 0.2415 0.2940 0.1712 0.1712 0.3569 0.3593
50 0.0370 0.0380 0.2210 0.3035 0.1274 0.1274 0.3104 0.3110
100 0.0190 0.0200 0.1570 0.2535 0.0891 0.0891 0.2553 0.2584
200 0.0165 0.0165 0.0915 0.1555 0.0626 0.0626 0.2037 0.2071
300 0.0135 0.0135 0.1125 0.2125 0.0488 0.0488 0.1897 0.1962
500 0.0030 0.0025 0.0480 0.1290 0.0388 0.0388 0.1615 0.1669

0.50 10 0.1392 0.1515 0.3405 0.3830 0.4314 0.4331 0.6120 0.6000
20 0.0800 0.0830 0.2750 0.3405 0.3034 0.3043 0.5373 0.5292
30 0.0606 0.0645 0.2600 0.3250 0.2448 0.2450 0.4998 0.4950
50 0.0410 0.0425 0.2370 0.3235 0.1894 0.1896 0.4518 0.4467
100 0.0231 0.0230 0.1320 0.2230 0.1359 0.1352 0.3577 0.3609
200 0.0120 0.0120 0.0930 0.1810 0.0953 0.0954 0.2933 0.2973
300 0.0040 0.0040 0.0630 0.1215 0.0778 0.0778 0.2652 0.2715
500 0.0010 0.0015 0.0740 0.1815 0.0594 0.0594 0.2505 0.2599

0.75 10 0.1366 0.1430 0.2605 0.3700 0.5007 0.5008 0.6038 0.6055
20 0.0845 0.0860 0.2245 0.3375 0.3510 0.3514 0.5445 0.5470
30 0.0665 0.0675 0.2090 0.3235 0.2894 0.2897 0.5039 0.5037
50 0.0410 0.0415 0.1690 0.2975 0.2242 0.2244 0.4425 0.4511
100 0.0285 0.0285 0.1335 0.2205 0.1588 0.1589 0.3767 0.3873
200 0.0120 0.0120 0.1125 0.2260 0.1114 0.1115 0.3254 0.3462
300 0.0035 0.0035 0.0700 0.1535 0.0923 0.0923 0.2761 0.2911
500 0.0000 0.0000 0.0445 0.1095 0.0716 0.0716 0.2314 0.2487
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Table 10. Empirical coverage probability and average width of the 95%
two-sided CIs for the parameter of the contaminated XRani distribution
(θ = 1.00, 1.50, 2.00, and 2.50)

θ n Empirical Coverage Probability Average Width

Likelihood Wald Boot-t BCa Likelihood Wald Boot-t BCa

1.00 10 0.2100 0.2140 0.2660 0.3910 0.5425 0.5394 0.5793 0.5948
20 0.1055 0.1080 0.2155 0.3555 0.3809 0.3801 0.5052 0.5188
30 0.0805 0.0830 0.2100 0.3540 0.3084 0.3081 0.4718 0.4946
50 0.0585 0.0600 0.1845 0.3295 0.2393 0.2392 0.4183 0.4449
100 0.0310 0.0315 0.1510 0.2955 0.1696 0.1696 0.3475 0.3749
200 0.0085 0.0085 0.1110 0.2280 0.1187 0.1187 0.2958 0.3220
300 0.0130 0.0130 0.1175 0.2110 0.0961 0.0961 0.2980 0.3205
500 0.0080 0.0080 0.0735 0.1755 0.0754 0.0754 0.2370 0.2581

1.50 10 0.7925 0.8575 0.5975 0.6975 0.6442 0.6305 0.5562 0.6131
20 0.6525 0.6765 0.5650 0.6665 0.4402 0.4362 0.4654 0.4999
30 0.5720 0.5955 0.5385 0.6480 0.3541 0.3522 0.4335 0.4682
50 0.4930 0.5100 0.5440 0.6550 0.2703 0.2695 0.3670 0.4030
100 0.3565 0.3620 0.4820 0.6160 0.1894 0.1891 0.2964 0.3267
200 0.2535 0.2560 0.4145 0.5455 0.1334 0.1333 0.2236 0.2514
300 0.1555 0.1585 0.3895 0.5400 0.1083 0.1082 0.2269 0.2605
500 0.1365 0.1380 0.3265 0.4765 0.0825 0.0825 0.2237 0.2727

2.00 10 0.8760 0.8610 0.8340 0.8270 0.8701 0.8264 0.6134 0.7350
20 0.8140 0.7920 0.8620 0.8055 0.5596 0.5476 0.5045 0.5691
30 0.7645 0.7480 0.8475 0.7660 0.4473 0.4413 0.4443 0.4914
50 0.6570 0.6225 0.7805 0.6415 0.3363 0.3338 0.3749 0.4128
100 0.4070 0.3835 0.5680 0.3765 0.2314 0.2306 0.2995 0.3300
200 0.1320 0.1200 0.2530 0.1010 0.1609 0.1606 0.2432 0.2717
300 0.0700 0.0610 0.1515 0.0510 0.1323 0.1321 0.2070 0.2262
500 0.0040 0.0040 0.0795 0.0030 0.1003 0.1003 0.2323 0.2492

2.50 10 0.8850 0.8375 0.7925 0.8020 1.6994 1.5974 1.1288 1.4664
20 0.8280 0.7625 0.7665 0.7795 1.0345 0.9879 0.7774 0.9138
30 0.7285 0.6610 0.6880 0.6925 0.7663 0.7410 0.6547 0.7530
50 0.6220 0.5540 0.5880 0.5740 0.5679 0.5561 0.5330 0.5926
100 0.3410 0.2835 0.3100 0.2640 0.3730 0.3693 0.4002 0.4362
200 0.1065 0.0905 0.1005 0.0755 0.2608 0.2595 0.2993 0.3186
300 0.0185 0.0145 0.0235 0.0140 0.2098 0.2091 0.2564 0.2715
500 0.0040 0.0035 0.0035 0.0025 0.1635 0.1632 0.2111 0.2237

8. Future Work

Although this study focused on four widely used methods for constructing proposed
CIs, other modern approaches such as the Bayesian CI also merit consideration. The
Bayesian CI, which incorporates prior information and provides a posterior probability-
based interval, may be particularly useful in settings with prior domain knowledge. While
Bayesian CI was not included in the present study due to the increased computational
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burden and the need for additional modeling assumptions (e.g., prior selection in Bayesian
analysis), future research should explore their applicability to the XRani distribution and
compare their performance in terms of ECP and AW.

Future research may explore hypothesis testing procedures and predictive modeling
based on the XRani distribution, extend CI estimation methods to handle censored life-
time data, and develop Bayesian credible intervals. Moreover, investigating robust esti-
mation techniques under model uncertainty and extending the XRani distribution frame-
work to multivariate data settings would further enrich the statistical toolbox available
for flexible and accurate inference.

Acknowledgements

We sincerely thank the reviewers for their valuable time and effort in reviewing our
manuscript and providing insightful suggestions and recommendations. This study was
supported by the Thammasat University Research Unit in Mathematical Sciences and
Applications.

References

[1] P. Schober, T.R. Vetter, Survival analysis and interpretation of time-to-event data:
The tortoise and the hare, Anesthesia & Analgesia 127(3) (2018) 792–798. Available
from: https://doi.org/10.1213/ANE.0000000000003653.

[2] O. Al-Ta’ani, M. Gharaibeh, Ola distribution: A new one parameter model with
applications to engineering and COVID-19 data, Applied Mathematics & Information
Sciences 17(2) (2023) 243–252. Available from: https://doi.org/10.18576/amis/
170207.

[3] F. Bittmann, Bootstrapping: An integrated approach with Python and Stata, Mu-
nich: De Gruyter Oldenbourg (2021). Available from: https://doi.org/10.1515/
9783110693348.

[4] S.P. Brooks, A. Gelman, General methods for monitoring convergence of iter-
ative simulations, Journal of Computational and Graphical Statistics 7(4) (1998)
434–455. Available from: https://doi.org/10.1080/10618600.1998.10474787.

[5] A. Canty, B. Ripley, Package boot. Bootstrap functions (2024). Available from:
https://cran.r-project.org/package=boot.

[6] W. Chankham, S.A. Niwitpong, S. Niwitpong, The simultaneous confidence interval
for the ratios of the coefficients of variation of multiple inverse Gaussian distributions
and its application to PM2.5 data, Symmetry 16(3) (2024) 331. Available from:
https://doi.org/10.3390/sym16030331.

[7] G.W. Corder, D.I. Foreman, Nonparametric statistics: A step-by-step approach.
Hoboken: John Wiley & Sons (2014).

[8] A.C. Davison, D.V. Hinkley, Bootstrap methods and their application. Santa Bar-
bara: Cambridge University Press (1997).

[9] U.V. Echebiri, J.I. Mbegbu, Juchez probability distribution: Properties and ap-
plications, Asian Journal of Probability and Statistics 20(2) (2022) 56–71. Available
from: https://doi.org/10.9734/ajpas/2022/v20i2419.

[10] O. Elechi, E. Okereke, I. Chukwudi, K. Chizoba, O. Wale, Iwueze’s distribution and
its application, Journal of Applied Mathematics and Physics 10(12) (2022) 3783–
3803. Available from: https://doi.org/10.4236/jamp.2022.1012251.

 

 

Bangmod Int. J. Math. & Comp. Sci., 2025

https://doi.org/10.1213/ANE.0000000000003653
https://doi.org/10.18576/amis/170207
https://doi.org/10.18576/amis/170207
https://doi.org/10.1515/9783110693348
https://doi.org/10.1515/9783110693348
https://doi.org/10.1080/10618600.1998.10474787
https://cran.r-project.org/package=boot
https://doi.org/10.3390/sym16030331
https://doi.org/10.9734/ajpas/2022/v20i2419
https://doi.org/10.4236/jamp.2022.1012251


408 W. Panichkitkosolkul et al.

[11] H.O. Etaga, C.K. Onyekwere, D.O. Oramulu, O.J. Obulezi, A new modification of
Rani distribution with more flexibility in application, Scholars Journal of Physics,
Mathematics and Statistics 10(7) (2023) 160–176. Available from: https://doi.

org/10.36347/sjpms.2022.v10i07.003.
[12] A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, D.B. Rubin, Bayesian

data analysis. Boca Raton: CRC Press (2013).
[13] M. Gharaibeh, Gharaibeh distribution and its applications, Journal of Statistics

Applications & Probability 10(2) (2021) 441–452. Available from: https://doi.

org/10.18576/jsap/100214.
[14] M. Ghitany, B. Atieh, S. Nadarajah, Lindley distribution and its applications,

Mathematics and Computers in Simulation 78(4) (2008) 493–506. Available from:
https://doi.org/10.1016/j.matcom.2007.06.007.

[15] A. Henningsen, O. Toomet, MaxLik: A package for maximum likelihood estimation
in R, Computational Statistics 26 (2011) 443–458. Available from: https://doi.

org/10.1007/s00180-010-0217-1.
[16] I.A. Iwok, B.J. Nwikpe, The Iwok-Nwikpe distribution: Statistical properties and its

application, Asian Journal of Probability and Statistics 15(1) (2021) 35–45. Available
from: https://doi.org/10.9734/ajpas/2021/v15i130347.

[17] J. Kiusalaas, Numerical methods in engineering with Python 3. Cambridge: Cam-
bridge University Press (2013).

[18] S. Kostyshak, Package bootstrap. Functions for the book “An introduction to the
bootstrap” (2024). Available from: https://cran.r-project.org/web/packages/
bootstrap.

[19] E.T. Lee, J.W. Wang, Statistical methods for survival data analysis. New York: John
Wiley & Sons (2003).

[20] A.A. Nanvapisheh, S.M.T.K. MirMostafaee, E. Altun, A new two-parameter distri-
bution: Properties and applications, Journal of Mathematical Modeling 7(1) (2019)
35–48. Available from: https://doi.org/10.22124/jmm.2018.9994.1148.

[21] A.W. Nwry, H.M. Kareem, R.B. Ibrahim, S.M. Mohammed, Comparison between
bisection, Newton, and secant methods for determining the root of the non-linear
equation using MATLAB, Turkish Journal of Computer and Mathematics Education
12(14) (2021) 1115–1122. Available from: https://doi.org/10.17762/turcomat.

v12i14.10397.
[22] O.B. Olufemi-Ojo, S.I. Onyeagu, H.O. Obiora Ilouno, On the application of two-

parameter Shanker distribution, International Journal of Innovative Science and
Research Technology 9(1) (2024) 807–820. Available from: https://doi.org/10.

5281/zenodo.10559198.
[23] C. Onyekwere, O. Obulezi, Chris-Jerry distribution and its applications, Asian

Journal of Probability and Statistics, 20, 16–30. (2022). Available from: https:

//doi.org/10.9734/AJPAS/2022/v20i130480.
[24] Y. Pawitan, In all likelihood: Statistical modeling and inference using likelihood.

Oxford: Clarendon Press (2001).
[25] C.P. Robert, G. Casella, Monte Carlo statistical methods. New York: Springer

(2004).
[26] T.A. Severini, Likelihood methods in statistics. Oxford: Oxford University Press

(2000).

 

 

Bangmod Int. J. Math. & Comp. Sci., 2025

https://doi.org/10.36347/sjpms.2022.v10i07.003
https://doi.org/10.36347/sjpms.2022.v10i07.003
https://doi.org/10.18576/jsap/100214
https://doi.org/10.18576/jsap/100214
https://doi.org/10.1016/j.matcom.2007.06.007
https://doi.org/10.1007/s00180-010-0217-1
https://doi.org/10.1007/s00180-010-0217-1
https://doi.org/10.9734/ajpas/2021/v15i130347
https://cran.r-project.org/web/packages/bootstrap
https://cran.r-project.org/web/packages/bootstrap
https://doi.org/10.22124/jmm.2018.9994.1148
https://doi.org/10.17762/turcomat.v12i14.10397
https://doi.org/10.17762/turcomat.v12i14.10397
https://doi.org/10.5281/zenodo.10559198
https://doi.org/10.5281/zenodo.10559198
https://doi.org/10.9734/AJPAS/2022/v20i130480
https://doi.org/10.9734/AJPAS/2022/v20i130480


Improving the XRani Distribution’s Inference 409

[27] R. Shanker, S. Sharma, R. Shanker, A two-parameter Lindley distribution for mod-
eling waiting and survival times data, Applied Mathematics 4(2) (2013) 363–368.
Available from: https://doi.org/10.4236/am.2013.42056.

[28] R. Shanker, Shanker distribution and its applications, International Journal of Sta-
tistics and Applications 5(6) (2015) 338–348. Available from: https://doi.org/10.
5923/j.statistics.20150506.08.

[29] R. Shanker, Akash distribution and its applications, International Journal of Prob-
ability and Statistics 4(3) (2015b) 65–75. Available from: https://doi.org/10.

5923/j.ijps.20150403.01.
[30] R. Shanker, Aradhana distribution and its applications, International Journal of

Statistics and Applications 6(1) (2016) 23–34. Available from: https://doi.org/

10.5923/j.statistics.20160601.04.
[31] R. Shanker, Amarendra distribution and its applications, American Journal of Math-

ematics and Statistics 6(1) (2016) 44–56. Available from: https://doi.org/10.

5923/j.ajms.20160601.05.
[32] R. Shanker, Sujatha distribution and its applications, Statistics in Transition.

New Series 17 (2016) 391–410. Available from: https://doi.org/10.21307/

stattrans-2016-029.
[33] R. Shanker, Garima distribution and its application to model behavioral science data,

Biometrics & Biostatistics International Journal 4(7) (2016) 275–281. Available from:
https://doi.org/10.15406/bbij.2016.04.00116.

[34] R. Shanker, Rani distribution and its application, Biometrics & Biostatistics Inter-
national Journal 6(1) (2017) 256–265. Available from: https://doi.org/10.15406/
bbij.2017.06.00155.

[35] R. Shanker, Akshaya distribution and its application, American Journal of Math-
ematics and Statistics 7(2) (2017) 51–59. Available from: https://doi.org/10.

5923/j.ajms.20170702.01.
[36] R. Shanker, K.K. Shukla, Ishita distribution and its applications, Biometrics & Bio-

statistics International Journal 5(2) (2017) 39–46. Available from: https://doi.

org/10.15406/bbij.2017.05.00126.
[37] R. Shanker, K.K. Shukla, R. Shanker, T.A. Leonida, A three-parameter Lindley

distribution, American Journal of Mathematics and Statistics 7(1) (2017) 15–26.
Available from: https://doi.org/10.5923/j.ajms.20170701.03.

[38] R. Shanker, Komal distribution with properties and application in survival analysis,
Biometrics & Biostatistics International Journal 12(2) (2023) 40–44. Available from:
https://doi.org/10.15406/bbij.2023.12.00381.

[39] R. Shanker, Pratibha distribution with properties and application, Biometrics &
Biostatistics International Journal 13 (2023) 136–142. Available from: https://

doi.org/10.15406/bbij.2023.12.00397.
[40] R. Shanker, K. Shukla, Adya distribution with properties and application, Biometrics

& Biostatistics International Journal 10 (2021) 81–88. Available from: https://doi.
org/10.15406/bbij.2021.10.00334.

[41] W. Thangjai, S. Niwitpong, S. Niwitpong, Estimation of the percentile of Birnbaum-
Saunders distribution and its application to PM2.5 in Northern Thailand. PeerJ 12
(2024) e17019. Available from: https://doi.org/10.7717/peerj.17019.

 

 

Bangmod Int. J. Math. & Comp. Sci., 2025

https://doi.org/10.4236/am.2013.42056
https://doi.org/10.5923/j.statistics.20150506.08
https://doi.org/10.5923/j.statistics.20150506.08
https://doi.org/10.5923/j.ijps.20150403.01
https://doi.org/10.5923/j.ijps.20150403.01
https://doi.org/10.5923/j.statistics.20160601.04
https://doi.org/10.5923/j.statistics.20160601.04
https://doi.org/10.5923/j.ajms.20160601.05
https://doi.org/10.5923/j.ajms.20160601.05
https://doi.org/10.21307/stattrans-2016-029
https://doi.org/10.21307/stattrans-2016-029
https://doi.org/10.15406/bbij.2016.04.00116
https://doi.org/10.15406/bbij.2017.06.00155
https://doi.org/10.15406/bbij.2017.06.00155
https://doi.org/10.5923/j.ajms.20170702.01
https://doi.org/10.5923/j.ajms.20170702.01
https://doi.org/10.15406/bbij.2017.05.00126
https://doi.org/10.15406/bbij.2017.05.00126
https://doi.org/10.5923/j.ajms.20170701.03
https://doi.org/10.15406/bbij.2023.12.00381
https://doi.org/10.15406/bbij.2023.12.00397
https://doi.org/10.15406/bbij.2023.12.00397
https://doi.org/10.15406/bbij.2021.10.00334
https://doi.org/10.15406/bbij.2021.10.00334
https://doi.org/10.7717/peerj.17019

	Introduction
	Methodology
	The Rani and the XRani Distributions
	Point Parameter Estimation
	Confidence Intervals

	Simulation Studies and Results
	Real Data Applications
	Daily Average PM2.5 Concentrations in Bang Kapi District
	Daily Average PM2.5 Concentrations in Phaya Thai District

	Conclusions
	Recommendations
	Limitations
	Future Work

