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Abstract In this paper, we study split Hammerstein integral equations of the form: u ∈ H1 such that

u + K1F1u = 0 and A(u) + K2F2(Au) = 0, where K1, F1 are maximal monotone maps defined on a

real Hilbert space H1, with D(K1) = D(F1) = H1; K2, F2 are maximal monotone maps defined on a

real Hilbert space H2, with D(K2) = D(F2) = H2 and A, a bounded linear map from H1 to H2. The

sequence of the algorithm is proved to converge strongly to a solution of the split Hammerstein integral

equation. The theorem proved, improves, unifies and complements some important related recent results

in the literature.
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1. Introduction

Let Ω be a measurable and bounded subset of Rn and dy be a σ-finite measure on Ω. A
nonlinear integral equation of Hammerstein type is one of the form

u(x) +

∫
Ω

k(x, y)f(y, u(y))dy = w(x), (1.1)

where the unknown function u and the function w lie in a suitable Banach space of
functions, say, F(Ω,R). The function k : Ω × Ω → R is the kernel of the equation while
f : Ω × R → R is a real-valued measurable function. Equation (1.1) can be put in an
abstract form as

u+KFu = 0, (1.2)

where the operators F,K : F(Ω,R) → F(Ω,R) are defined by

Fu(x) = f(x, u(x)) and Kv(x) =

∫
Ω

k(x, y)v(y)dy, x ∈ Ω, (1.3)

respectively, where, without loss of generality, we have taken the function w ≡ 0. Ham-
merstein integral equations have applications in different areas of science and engineering.
For instance, it can be used to describe the final state of a spatially distributed popula-
tion (see, e.g., [34] and [41]). Hammerstein equations are also intimately connected with
nonsmooth calculus of variation. Consider the following energy functional defined by

Ju =

∫
Ω

(h(u(t))− f(s, u(s)))ds, (1.4)

where h denotes the kinetic energy of the system and f is the potential energy generator
of the superposition operator. The functional J , in general, is not differentiable. How-
ever, it admits generalized gradient or subgradient in the sense, for instance, of Clarke’s
generalized gradient (see, e.g., [23]). Thus the problem of minimizing the functional J
can now be seen as the Euler Lagrange inclusion

Lu ∈ ∂Fu, (1.5)

where L is a linear operator and ∂F is the generalized Clarke’s gradient. Equation (1.5),
in turn, is equivalent to the following Hammerstein inclusion problem

u+KFu ∋ 0. (1.6)

Consider also the following nonlinear boundary value problem{
−∆u = f(x, u(x)), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.
(1.7)

where Ω is a smooth subset of Rn. Define the operatorK : F(Ω,R) → F(Ω,R) byKg = u,
where u is the unique solution of the corresponding linear boundary value problem:{

−∆u = g,

u(x) = 0, x ∈ ∂Ω,
(1.8)

and Fu(x) = f(x, u(x)). Then, (1.7) can be put in the form of (1.2).

Let H be a real Hilbert space. A map A : D(A) ⊂ H → H is called monotone if⟨
Ax−Ay, x− y

⟩
≥ 0, ∀ x, y ∈ D(A), (1.9)
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where D(A) is the domain of A. Several existence results have been proved for approxi-
matuing solutions of (1.2) when the operators F and K are monotone (See, for instance,
Browder [4, 29, 30], Browder and De Figueiredo [5, 6], Brézis and Browder [26, 28], Appel
et al. [25], and Cardinali and Papageorgiou [9]).

In general, Hammerstein integral equations do not have closed form solutions. Thus,
developing algorithms for approximating their solutions is of great interest. Let A : H →
H be a nonlinear operator, A is said to be angle bounded with angle β > 0 if and only if

⟨Ax−Ay, z − y⟩ ≤ β⟨Ax−Ay, x− y⟩, (1.10)

for any x, y, z ∈ H. For y = z, inequality (1.10) implies the monotonicity of A. A
monotone linear operator A : H → H is said to be angle bounded with angle α > 0, if

|⟨Ax, y⟩ − ⟨Ay, x⟩| ≤ 2α⟨Ax, x⟩ 1
2 ⟨Ay, y⟩ 1

2 , (1.11)

for all x, y ∈ H. Brézis and Browder, in [27], proved the following approximation result
for angle bounded operators defined by suitable Galerkin method.

Theorem 1.1 (Brézis and Browder, [27]). Let H be a separable Hilbert space and C be
a closed subspace of H. Let K : H → C be a bounded continuous monotone operator
and F : C → H be an angle-bounded and weakly compact mapping. For a given f ∈ C,
consider the Hammerstein equation

(I +KF )u = f (1.12)

and its nth Galerkin approximation given by

(I +KnFn)un = P ∗f, (1.13)

where Kn = P ∗
nKPn : H → C and Fn = PnFP ∗

n : Cn → H, with the symbols having their
usual meanings (see, e.g., Pascali [38]). Then, for each n ∈ N, the Galerkin approximation
(1.13) admits a unique solution un in Cn and {un} converges strongly in H to the unique
solution u ∈ C of the equation (1.12).

Attempts have been made to develop iterative algorithms for approximating solutions of
(1.2) (see, e.g., Mann [35]). However, most of these results require the inverse of the
operator K not only to exist but also be strongly monotone. These requirements do not
only limit the class of operators involved, but is also not convenient for implementation.
The first satisfactory result for approximating solution of Hammerstein equation was given
by Chidume and Zegeye (see [19–21]). They considered the product space Q = H × H
and defined the auxillary operator T : Q → Q by

T [u, v] = [Fu− v,Kv + u], u, v ∈ Q. (1.14)

It can be easily seen that u∗ solves (1.2) if and only if T [u∗, v∗] = 0 with v∗ = Fu∗. The
auxiliary operator T gave an insight on how to develop a coupled algorithm for computing
solutions of (1.2). The same authors (see Chidume and Zegeye [21]) defined the following
coupled algorithm: for u0, v0 ∈ H, define the sequences {un} and {vn} recursively by

un+1 = un − αn(Fun − vn), n ≥ 0, (1.15)

vn+1 = vn − αn(Kvn + un), n ≥ 0, (1.16)
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where {αn} is a sequence in (0, 1) satisfying appropriate conditions. For more recent
results on the approximation of solutions of Hammerstein equations (see, e.g., Chidume
and Djitte [14–16], Chidume and Ofeodu [31], Chidume et al. [17, 18, 32, 33], Chidume
and Bello [13]), and Minjibir and Muhammad [36]).

Let C and Q be nonempty, closed and convex subsets of real Hilbert spaces H1 and H2,
respectively. The split feasibility problem (SFP) is given by the following:

find x∗ ∈ C such that Ax∗ ∈ Q, (1.17)

where A : H1 −→ H2 is a bounded linear map.

This problem was introduced by Censor and Elfving [11] for the modeling of inverse
problems stemming from phase retrievals, image processing and intensity modulated ra-
diation therapy (IMRT) (see, e.g., [3, 7, 8]). The SFP has also been successfully applied in
other areas such as immaterial science, computerized tomography, antenna design, sensor
networks, data denoising and data compression (see, e.g., [1, 2, 10, 12, 24, 40]).

Combining the split feasibility problem and the coupling technique introduced by Chidume
and Zegeye in [21], we introduce split Hammerstein integral equation. Let H1 and H2 be
real Hilbert spaces. Let F1,K1 : H1 −→ H1 and F2,K2 : H2 −→ H2 be monotone
operators. Define the sets Ω1 and Ω2 by

Ω1 = {u ∈ H1 : u+K1F1u = 0, with v = F1u},
and

Ω2 = {u ∈ H2 : u+K2F2u = 0, with v = F2u}.

The split Hammerstein integral equation is to find

u∗ ∈ Ω1 such that Au∗ ∈ Ω2, (1.18)

where A : H1 −→ H2 is a bounded linear map.

We prove a strong convergence result for approximating solution of (1.18). This prob-
lem improves, unifies and complements many existing results on Hammerstein integral
equation in the literature.

2. preliminaries

Definition 2.1. Let A : H → 2H be a map.

The map A is called maximal monotone if A is monotone and the graph G(A) of A,

G(A) := {(u, v) ∈ H ×H : v ∈ A(u)},

is not properly contained in the graph of any other monotone map.

dom(A) := {u ∈ H : A(u) ̸= ∅}.
The resolvent of A with a parameter λ > 0 is defined by

JA
λ (I + λA)

−1
,

where I is the identity map.

Remark 2.2. (i) The map A is monotone if and only if the resolvent JA
λ of A is single-

valved and firmly nonexpansive.
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(ii) The map A is maximal monotone if and only if the resolvent JA
λ of A is single-valved,

firmly nonexpansive and dom(JA
λ ) = H.

(iii) Moreover, 0 ∈ A(u∗) ⇐⇒ u∗ ∈ F (JA
λ ), where F (JA

λ ) is the fixed point set of JA
λ .

(3) The map A is called β-inverse strongly monotone (ism) with constant β > 0 if,

⟨u− v, ηu − ηv⟩ ≥ β||ηu − ηv||2, ∀ u, v ∈ H, ηu ∈ Au, ηv ∈ Av.

Definition 2.3. Let T : H → H be map.

(1) The map T is called firmly nonexpansive if, ⟨u−v, Tu−Tv⟩ ≥ ||Tu−Tv||2, ∀ u, v ∈ H.

(2) The map T is called α-averaged if T = (1− α)I + αS,

where α ∈ (0, 1), S : H → H is a nonexpansive map and I is the identity map.

Thus firmly nonexpansive maps (in particular, projections on nonempty closed and convex
subsets and resolvent operators of maximal monotone operators) are averaged.

Lemma 2.4. [42] (1) T is nonexpansive if and only if (I − T ) is 1
2 -ism.

(2) If T is v-ism and γ > 0, then, γT is v
γ -ism.

(3) T is averaged if and only if (I − T ) is v-ism for some v > 1
2 . Indeed, for η ∈ (0, 1),

T is η-averaged if and only if (I − T ) is 1
2η -ism.

(4) If T1 is η1-averaged and T2 is η2-averaged, where η1, η2 ∈ (0, 1), then, T1oT2 is
η-averaged, where η = η1 + η2 − η1η2.

(5) If T1 and T2 are averaged and have a common fixed point, then, F (T1oT2) = F (T1) ∩
F (T2).

Lemma 2.5. [22] Let H be a real Hilbert space and F,K : H → H be maps with D(F ) =
D(K) = H. Let Q = H ×H and A : Q → Q be the map defined by

Aw := (Fu− v,Kv + u), ∀w = (u, v) ∈ Q. (2.1)

Assume that F and K are maximal monotone and satisfy the range condition. Then, A
is maximal monotone and also satisfies the range condition.

Lemma 2.6. [37, 39] Let E be nonempty, closed and convex subset of a real Hilbert space
H. Let h : E → E be an averaged map. Let {xn} be a sequence generated by{

x0 ∈ E,

xn+1 = αnx0 + (1− αn)hxn,
(2.2)

where {αn} is a sequence in [0, 1] such that limαn = 0 and
∑

αn = ∞. Then, {xn}
converges strongly to a point x∗ ∈ F (h).

3. Main Result

Lemma 3.1. Let H1 and H2 be two real Hilbert spaces. Let A1 : H1 → 2H1 and A2 :
H2 → 2H2 be two maximal monotone maps and B : H1 → H2 be a bounded linear map
with B ̸= 0 and Ω =: {u ∈ H1 : 0 ∈ A1(u) and 0 ∈ A2(Bu)} ̸= ∅. Let {xn} be a sequence
generated by{

x0 ∈ H1,

xn+1 = αnx0 + (1− αn)J
A1

λ

[
I − γB∗(I − JA2

λ )B
]
xn,

(3.1)
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where γ ∈
(
0, 2

L

)
, with L = ||B∗B||, and {αn} ⊂ [0, 1], with lim

n→∞
αn = 0 and

∑∞
n=1 αn =

∞. Then, the sequence {xn} converges strongly to a point, x∗ ∈ Ω.

Proof. First, we show that I − γB∗(I − JA2

λ )B is averaged.

Let p ∈ F . Then, JA1

λ (p) = p and JA2

λ (Bp) = Bp. Define V := I−γB∗(I−JA2

λ )B. Then,

V (p) = p. By Remark (2.2) and Definition (2.3), we have that JA1

λ and JA2

λ are averaged

maps. Since, JA2

λ is averaged, then, by Lemma 2.4, we have that I − JA2

λ is v-ism with
v > 1

2 . So,

⟨B∗(I − JA2

λ )Bx−B∗(I − JA2

λ )By, x− y⟩ = ⟨(I − JA2

λ )Bx− (I − JA2

λ )By,Bx−By⟩
≥ v||(I − JA2

λ )Bx − (I − JA2

λ )By||2

≥ v

L
||B∗(I − JA2

λ )Bx − B∗(I − JA2

λ )By||2

Hence, γB∗(I − JA2

λ )B is v
γL -ism. This implies that I − γB∗(I − JA2

λ )B is averaged.

Now, Setting h := I−γB∗(I−JA2

λ )B, Algorithm (3.5) reduces to the following algorithm:

{
x0 ∈ H1,

xn+1 = αnx0 + (1− αn)(J
A1

λ oh)xn,
(3.2)

By lemma 2.4, we have that JA1

λ oh is averaged and F (JA1

λ oh) = F (JA1

λ )∩F (h). Also, by

Lemma 2.6 and the fact that JA1

λ oh is averaged, we have that {xn} converges strongly to

a point, x∗ ∈ F (JA1

λ oh), i.e., x∗ ∈ F (JA1

λ ) and x∗ ∈ F (h). By Remark 2.2(iii), we have
that

x∗ ∈ F (JA1

λ ) ⇐⇒ 0 ∈ A1(x
∗). (3.3)

Also, x∗ ∈ F (h) =⇒ γB∗(I − JA2

λ )Bx∗ = 0.

Now, for JA2

λ (Bx∗) = Bx∗+D, with B∗(D) = 0, combined with the fact that JA2

λ (Bp) =
Bp, we get that

||JA2

λ (Bx∗)− JA2

λ (Bp)||2 = ||Bx∗ −Bp||2 + ||D||2.

Since JA2

λ is nonexpansive, we have that D = 0. Thus, JA2

λ (Bx∗) = Bx∗, and by Remark
2.2(iii), we have that

Bx∗ ∈ F (JA2

λ (Bx∗)) ⇐⇒ 0 ∈ A2(Bx∗). (3.4)

Applying inclusions (3.3) and (3.4), we conclude that x∗ ∈ F .

Now, we prove our main theorem.

Theorem 3.2. Let H1 and H2 be two real Hilbert spaces and Q1 := H1 × H1 and
Q2 := H2 × H2. Let K1, F1 : H1 → H1 and K2, F2 : H2 → H2 be two maximal
monotone maps and B : H1 → H2 be a bounded linear map with B ̸= 0 and Ω := {u ∈
H1 : u + K1F1u = 0, Bu + K2F2(Bu) = 0, with v = F1u, y = F2(Bu)} ̸= ∅. Let
G1 : Q1 → Q1 and G2 : Q2 → Q2 be two maps defined by G1(u, v) := (F1u− v,K1v + u)
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and G2(t, y) := (F2(t) − y,K2y + t), respectively. Let {xn} be a sequence generated
iteratively by{

x0 ∈ H1,

xn+1 = αnx0 + (1− αn)J
G1

λ

[
I − γB∗(I − JG2

λ )B
]
xn,

(3.5)

where γ ∈
(
0, 2

L

)
, with L = ||B∗B||, and {αn} ⊂ [0, 1], with lim

n→∞
αn = 0 and

∑∞
n=1 αn =

∞. Then, the sequence {xn} converges strongly to a point, x∗ ∈ Ω.

Proof. By Lemma 2.5, G1 and G2 are maximal monotone maps. Setting A1 = G1 and
A2 = G2 in Lemma 3.1, the result of Theorem 3.2 is immediate.

Now in Theorem 3.2, setting H1 = H2 = H and B = I, the identity on H, we obtain
the following corollary for approximating a common solution of two Hammerstein integral
equations.

Corollary 3.3. Let H be a real Hilbert spaces and Q := H × H. Let K1, F1 : H → H
and K2, F2 : H → H be two maximal monotone maps and Ω := {u ∈ H : u +K1F1u =
0, and u+K2F2u = 0} ̸= ∅. Let G1 : Q → Q and G2 : Q → Q be two maps defined by
G1(u, v) := (F1u − v,K1v + u) and G2(t, y) := (F2(t) − y,K2y + t), respectively. Then,
under the conditions of Theorem 3.2, the sequence generated by (3.5) converges strongly
to a point in Ω.

Example 3.4. Let Hi = L2([0, 1]), i = 1, 2, and ||u||2 =
(∫ 1

0
|u(t)|2dt

) 1
2

.

Let Fi, Ki : Hi → Hi be defined by (Fiu)(t) = (t + 1)ui(t) and (Kiv)(t) = tvi(t) ∀ t ∈
[0, 1].

Let B : H1 → H2 be defined by (Bu)(t) = t2

2 u(t) ∀ t ∈ [0, 1].

Clearly, Fi and Ki are maximal monotone for each i. B is a bounded linear map with

(B∗u)(t) = t2

2 u(t) ∀ t ∈ [0, 1] and ||B∗B||2 = 1
2 . Observe that u∗(t) = 0 ∀ t ∈ [0, 1] is

the solution of the equations u + K1F1u = 0 and Bu + K2F2Bu = 0. Also, by Lemma
2.5, G1 and G2 are maximal monotone.

Algorithm 3.2 can be written as follows:
Choose x0 ∈ H1 with γ = 2, and αn = 1

n+1 . Then, compute the (n+1)th iteration as
follows: {

xn+1(t) = αnx0(t) + (1− αn)J
G1

λ

[
I − γB∗(I − JG2

λ )B
]
xn(t).

Conclusion

In this paper, we have studied split Hammerstein integral equation problem and proved
a strong convergence theorem for approximating solution of the problem in real Hilbert
spaces. The problem studied improves, unifies and complements several other related
results in the literature.
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[27] H. Brézis, F.E. Browder, Nonlinear integral equations and systems of Hammerstein
type, Bull. Amer. Math. Soc. 82(1976) 115–147.
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