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Abstract Scalarization approaches transform vector optimization problems (VOPs) into single-objective

optimization. These approaches are quite elegant; however, they suffer from the drawback of necessitating

the assignment of weights to prioritize specific objective functions. In contrast, the conjugate gradient

(CG) algorithm provides an attractive alternative that does not require the conversion of any objective

function or assignment of weights. Nevertheless, the set of Pareto-optimal solutions is obtainable. We

introduce three CG techniques for solving VOPs by modifying their search directions. We consider

modifying the search directions of the Fletcher-Reeves (FR), Conjugate Descent (CD), and Dai-Yuan

(DY) CG techniques to obtain their descent property without the use of any line search, as well as to

achieve good convergence properties. The sufficient descent property of these techniques are established

without any line search and achieve global convergence using Wolfe line search. Numerical experiments

are conducted to demonstrate the implementation and efficiency of the proposed techniques.
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DESCENT MODIFIED CONJUGATE GRADIENT METHODS 73

1. Introduction

Conjugate gradient (CG) techniques for solving vector optimization problems (VOPs)
have begun to gain substantial attention from researchers since their introduction to
the vector setting by Lucambio Pérez and Prudente [37]. Their simplicity and minimal
memory requirements are the factors in developing interest in the vector setting, just as
they were in classical optimization [2].

In the following, we consider an unconstrained vector optimization problem of the form

MinimizeQ F (z), z ∈ Rn, (1.1)

where F : Rn −→ Rm is in C1 (continuously differentiable functions) and Q ⊂ Rm is
closed, convex and pointed cone with nonempty interior. The partial order defined in
Rm, ≼Q, generated by Q is

a ≼Q b⇐⇒ b− a ∈ Q,

and ≺Q, generated by int(Q) is

a ≺Q b ⇐⇒ b− a ∈ int(Q).

If Q = Rm+ , then problem (1.1) is considered to be multiobjective optimization. If Q = R+

and Rm = R, then problem (1.1) reduces to single-objective optimization.
The VOPs have diverse applications in bi-level programming, cancer treatment plan-

ning, engineering, environmental analysis, location science, management science, and sta-
tistics. See for instance the references, [13, 17, 18, 25, 28, 30, 33, 45].

Furthermore, the VOPs are known to be solved by scalarization approaches. It involves
transforming a vector optimization problem into an appropriate scalar optimization prob-
lem with a real-valued objective function, [31, 36]. However, the choice of weights can
significantly impact the results, and finding a satisfactory set of weights that represents
your preferences can sometimes be challenging. Additionally, this technique does not
guarantee the discovery of all Pareto-optimal solutions. Hence, it is crucial to thoroughly
contemplate alternative techniques for solving VOPs. Therefore, CG algorithms provide
attractive alternatives that do not have this restriction and improve vector optimization
problem-solving strategies.

Over the last twenty years, the interest in studying descent-based algorithms to solve
VOPs, initially designed for single-objective optimization, has been increasing. We can
trace the use of descent-based algorithms for VOPs to at least 2005, with Drummond and
Svaiter [14] article on the steepest descent technique and that of Bonnel et al. [6] article
on proximal technique. Since then, several other works in this direction have followed
suit, [3, 4, 7–10, 15, 19, 21, 23, 24, 26, 38, 42].

In 2018, Lucambio Pérez and Prudente [37] studied some CG techniques by extending
them to vector optimization. Before delving into their contribution to this study, let us
look at some properties of Q. The positive polar-cone of Q is given by

Q∗ := {p ∈ Rm | ⟨p, z⟩ ≥ 0, ∀ z ∈ Q}. (1.2)

Please cite this article as: J. Yahaya et al., Descent modified conjugate gradient methods for vector
optimization problems, Bangmod J-MCS., Vol. 9 (2023) 72–91.
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Note that since Q is closed and convex. Then, Q = Q∗∗. Suppose C ⊆ Q∗\{0} is compact,
and Q∗ is defined to be the conic hull of a convex hull of C as follows

Q∗ = cone(conv(C)). (1.3)

Now, for a given Q (closed, convex and pointed cone with nonempty interior), the set

C = {p ∈ Q∗ | ||p|| = 1}, (1.4)

satisfies (1.3). Throughout this paper, we consider C to be as defined in (1.4).
Define θ : Rm → R as

θ(z) := sup{⟨z, p⟩ | p ∈ C}. (1.5)

By the compactness of C, we have that θ is well-defined.
Next, define ψ : Rn × Rn → R by

ψ(z, d) := θ(JF (z)d) = sup{⟨JF (z)d, p⟩ | p ∈ C}. (1.6)

For a given point z we represent the Jacobian of F by JF (z).
Now, we can describe a CG technique as

zk+1 = zk + αkdk, k ≥ 1, (1.7)

where αk > 0 is the step size or step length which is obtainable through a line search
technique, and dk is the search direction defined by

dk :=

{
u(zk), k = 1,

u(zk) + βkdk−1, k ≥ 2.
(1.8)

Here, the algorithmic parameter βk can be chosen from the following options

βFRk :=
ψ(zk, u(zk))

ψ(zk−1, u(zk−1))
, (1.9)

βCDk :=
ψ(zk, u(zk))

ψ(zk−1, dk−1)
, (1.10)

βDYk :=
−ψ(zk, u(zk))

ψ(zk, dk−1)− ψ(zk−1, dk−1)
, (1.11)

βPRPk :=
−ψ(zk, u(zk)) + ψ(zk−1, u(zk))

−ψ(zk−1, u(zk−1))
, (1.12)

βHSk :=
−ψ(zk, u(zk)) + ψ(zk−1, u(zk))

ψ(zk, dk−1)− ψ(zk−1, dk−1)
, (1.13)

βLSk :=
−ψ(zk, u(zk)) + ψ(zk−1, u(zk))

−ψ(zk−1, dk−1)
, (1.14)

they are called the Fletcher-Reeves (FR), Conjugate Descent (CD), Dai-Yuan (DY),
Polak-Ribiére-Polyak (PRP), Hestenes-Stiefel (HS), and Liu-Storey (LS), respectively.
Notice that if Rm = R and Q = R+, then ψ(·, ·) = ⟨·, ·⟩ and JF (x) = ∇f(x). Hence, the
above listed CG parameters ((1.9)- (1.14)) become the classical FR, CD, DY, PRP, HS,
and LS, respectively.
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Definition 1.1. A direction d is Q-descent direction (Q-DD) for F at z if

ψ(z, d) < 0. (1.15)

A z is Q-critical point for F if

ψ(z, d) ≥ 0, (1.16)

for all d.

Definition 1.2. A direction d is said to fulfil sufficient descent condition (SDC) at z if

ψ(z, d) ≤ cψ(z, u(z)), (1.17)

for some c > 0.

Lucambio Pérez and Prudente [37] introduced the βk parameters (1.9)-(1.13). This
study specifically investigated the CG techniques (1.9)-(1.13), that only CD and DY
satisfy the sufficient descent conditions (SDC). The study extended upon some concepts
found in [1, 11, 12, 22]. Additionally, it introduced the concepts of Zoutendijk and
Wolfe conditions in this context. The study established the global convergence of these
techniques and conducted a numerical experiment to demonstrate their implementation.
Notably, the nonnegative PRP and HS outperformed the others, while DY and CD showed
better performance than FR. Subsequently, many other works in this direction followed
suit. Readers can refer to [24, 26, 38, 47] for further developments in this area.

In 2022, Goncalves et al. in [23] proposed the βk parameter (1.14) and two of its
modifications, and their global convergence was established using Wolfe and Armijo line
searches. It is worth noting that the search direction LS (1.14) could not achieve SDC in
this setting. The authors established the global convergence of this technique by assuming
the descent condition. However, their modified LS achieve this property without any line
search.

Recently, He et al. [26] proposed some spectral conjugate gradient techniques for
VOPs. While Yahaya and Kumam [47] proposed the first hybrid CG techniques for
VOPs and established their global convergence using the strong Wolfe conditions (SWC).
The presented numerical experiments show that these hybrid CG techniques appear to
be promising.

Motivated by the significant impact [48, 49], we present the generalization of [49] to
the vector setting and two of its variations for the CD and DY CG techniques. We
propose three CG techniques for solving VOPs by modifying their search directions. In
particular, we consider modifying the search directions of the Fletcher-Reeves (FR), Con-
jugate Descent (CD), and Dai-Yuan (DY) CG techniques to obtain their descent property
without the use of any line search and to achieve good convergence properties. We estab-
lish their descent property without line search and obtain their global convergence using
Wolfe line search. Additionally, we present numerical experiments to demonstrate the
implementation and efficiency of the proposed techniques.

In Section 2, we present some basic and preliminary results related to vector opti-
mization. In Section 3, we investigate the sufficient descent property and the global
convergence of the proposed techniques. In Section 4, we present and discuss numerical
results. Finally, in Section 5, we provide some closing remarks.
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2. Preliminaries

In this section, we present some basic notions and preliminary results in VOP used in
this paper. For some notable preliminaries in VOP, see the references [14, 35, 37].

The aim, in vector optimization is to minimize a finite set of objective functions si-
multaneously. Rarely does a single point minimize all objective functions at once. In this
setting, an alternative notion of optimality is needed. The concepts of Pareto-optimality
and weak Pareto optimality are utilized.

Definition 2.1. [20] A point z̄ ∈ Rn is Pareto optimal or efficient if and only if ∄ z ∈ Rn
such that F (z) ≼Q F (z̄) and F (z) ̸= F (z̄).

Definition 2.2. [20] A point z̄ ∈ Rn is weak Pareto optimal or weak efficient if and only
if ∄ z ∈ Rn such that F (z) ≺Q F (z̄).

Notice that when z̄ ∈ Rn represents a Pareto optimal point, it also qualifies as a weak
Pareto point. However, the reverse statement is often not true.

Other properties of Q are

−Q = {z ∈ Rm | ⟨z, p⟩ ≤ 0, ∀ p ∈ Q∗},

and

−int(Q) = {z ∈ Rm | ⟨z, p⟩ < 0, ∀ p ∈ Q∗ \ {0}}.

In multiobjective optimization setting, Q = Rm+ , implies Q∗ = Q and C is taken to be
the canonical basis in Rm. Assuming Q is a polyhedral cone, Q∗ also possesses polyhedral
characteristics. Furthermore, C can be regarded as a finite set of extremal rays belonging
to the polyhedral cone Q∗.

For a given point z, the term Im(JF (z)) represents the image on Rm generated by
JF (z). A necessary condition for Q− optimality of z̄ ∈ Rn is given as

−int(Q) ∩ Im(JF (z̄)) = ∅, (2.1)

when the condition (2.1) is fulfilled, we classify the point z̄ ∈ Rn as stationary or Q-
critical. On the contrary, if z̄ ∈ Rn does not meet the criteria for Q-critical, then there is
a h belonging to Rn for which JF (z̄)h falls within −int(Q). This signifies that h serves
as a Q-DD (1.15) for F at the point z̄. In other words, we have a positive s for which
F (z̄ + r̄h) ≺Q F (z̄), for all 0 < r̄ < s. See, for instance, [35] for a full discussion on this.

Lemma 2.3. [14] Suppose F : Rn → Rm is in C1. Then, the statements below hold:

(a) ψ(z, z
′
+ αd) ≤ ψ(z, z

′
) + αψ(z, d), for z, z

′
, d ∈ Rn and α ≥ 0;

(b) The mapping (z, d) 7−→ ψ(z, d) is continuous;

(c) |ψ(z, d)− ψ(z
′
, d)| ≤ ∥JF (z)− JF (z

′
)∥∥d∥, for z, z′

, d ∈ Rn;
(d) Let ∥JF (z)− JF (z

′
)∥ ≤ L∥z − z

′∥, then |ψ(z, d)− ψ(z
′
, d)| ≤ L∥d∥∥z − z

′∥.

We define u : Rn → Rn and v : Rn → R, respectively by

u(z) := argmin

{
ψ(z, d) +

∥d∥2

2
| d ∈ Rn

}
(2.2)

and

v(z) := ψ(z, u(z)) +
∥u(z)∥2

2
. (2.3)
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Given that the real-valued function ψ(z, ·) is closed and convex, and d 7−→ ∥d∥2

2 is strictly
convex, then u(z) exists and is unique. The function u(z) allows us to develop the
concept of the steepest descent direction in the vector minimization setting. It is worth
noting that in scalar optimization, we have ψ(z, d) = ⟨∇F (z), d⟩, u(z) = −∇F (z), and
v(z) = −∥∇F (z)∥2

2 , respectively.
Consider the convex quadratic problem{

Minimize α+ 1
2∥d∥

2,

subject to [JF (z)d]i ≤ α, i = 1, 2, . . . ,m,
(2.4)

with linear inequality constraints, see for instance, [16]. We say that the step size, α > 0
can be acquired through an exact line search if

ψ(z + αd, d) = 0. (2.5)

We now give the vector Wolfe conditions that was introduced by Lucambio Pérez and
Prudente [38].

Definition 2.4. [37] Suppose d ∈ Rn is a Q-descent and e ∈ Q, we have

0 < ⟨p, e⟩ ≤ 1, (2.6)

for all p ∈ C.
Now, α > 0 fulfils the standard Wolfe condition (WWC) if

F (z + αd) ≼Q F (z) + ραψ(z, d)e (2.7)

ψ(z + αd, d) ≥ σψ(z, d), (2.8)

where 0 < ρ < σ < 1. Furthermore, α > 0 fulfils the strong Wolfe condition (SWC) if

F (z + αd) ≼Q F (z) + ραψ(z, d)e (2.9)

|ψ(z + αd, d)| ≤ σ|ψ(z, d)|. (2.10)

It is interesting to know that the vector e ∈ Q given in (2.6), always exists. Specifically,
for multiobjective optimization, we take e to be [1, · · · , 1]T ∈ Rm, Q and C are considered
as Rm+ , and canonical basis of Rm, respectively.

Let us now conclude this section with the following important Lemmas.

Lemma 2.5. [14] (a) let z be a Q-critical for F , then u(z) = 0 and v(z) = 0. (b) suppose

z is not Q-critical for F, then u(z) ̸= 0, v(z) < 0, ψ(z, u(z)) < −∥u(z)∥2

2 < 0 and u(z)
Q-DD for F at z. (c) The u and v are continuous maps.

Lemma 2.6. [37] Let p and q be any scalars and t ̸= 0, then following hold:

(a) pq ≤ p2

2 + q2

2 ,

(b) 2pq ≤ 2t2p2 + q2

2t2 ,

(c) (p+ q)2 ≤ 2p2 + 2q2,

(d) (p+ q)2 ≤ (1 + 2t2)p2 + [1 + 1
2t2 ]q

2.
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3. Convergence analysis

In this section, we propose the modified CG techniques, prove their SDC and investigate
their convergence properties.

Assumption 1. Suppose that the cone Q is finitely generated and there exists an open
set ∆ for which the L := {z | F (z) ≼Q F (z1)} ⊂ ∆, where z1 ∈ Rn and there exists L > 0

such that JF satisfies ∥JF (z)− JF (z
′
)∥ ≤ L∥z − z

′∥ for all z, z
′ ∈ ∆.

Assumption 2. Suppose a sequence {Dk}k∈N ⊂ F (L) and Dk+1 ≼Q Dk, for all k, then
there exists D ∈ Rm for which D ≼Q Dk. That is, all monotone nonincreasing sequences
in F (L) are bounded below.

We emphasize that, these assumptions are natural extension of those considered in the
classical optimization.

The following Lemma is called the Zoutendijk condition

Lemma 3.1. [37] Suppose Assumptions 1 and 2 hold. Consider the iteration (1.7), with
dk being Q-DD for F and αk fulfils the WWC (2.7). Then,

∞∑
k=1

ψ2(zk, dk)

||dk||2
< +∞. (3.1)

We give the outline of the propose CG algorithm.

Algorithm 1: Descent Conjugate Gradient Scheme (DCGS)

Step 0: Let 0 < ρ < σ < 1, e ∈ Q as in (2.6), z1 ∈ Rn be given and initialize k ←− 1.
Step 1: Compute u(zk) and v(zk) as in (2.2) and (2.3), respectively. If v(zk) = 0, then
STOP.

Step 2: Compute

dk =

{
u(zk), if k = 1,

ℓku(zk) + βkdk−1, if k ≥ 2,
(3.2)

where βk is an algorithmic parameter.
Step 3: Compute αk > 0 by using the conditions (2.9).
Step 4: Set zk+1 as in (1.7), for k ←− k + 1 and move to Step 1.

Remark 3.2. • In Step 1, the algorithm compute the steepest descent direction,
if the optimal value v(zk) = 0, we have Q-critical, so it stop. Otherwise, move to
Step 2 by computing dk with an appropriate ℓk and βk;

• In Step 3, it is required that the step size αk is greater than zero and satisfies the
strong Wolfe conditions (2.9);

• If dk is a Q-descent direction of F at zk, under Assumptions 1 and 2, it is possible
to show that there exist intervals of positive step sizes that satisfy such conditions;
see [[37], Proposition 3.2];

• In Step 4, we keep updating the iterates; this process is repeated until a solution
is obtained or the maximum number of iterations is reached.
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The main goal in this paper is to modify the search direction as indicated in (3.2),

where ℓk :=

(
1− βk

ψ(zk,dk−1)
ψ(zk,u(zk))

)
. Notice that if βk := βFRk in (3.2), we deduce that

dk :=

(
1− βFRk

ψ(zk, dk−1)

ψ(zk, u(zk))

)
u(zk) + βFRk dk−1, (3.3)

using (1.9), we have

dk :=

(
1− ψ(zk, u(zk))

ψ(zk−1, u(zk−1))

ψ(zk, dk−1)

ψ(zk, u(zk))

)
u(zk) +

(
ψ(zk, u(zk))

ψ(zk−1, u(zk−1))

)
dk−1,

=

(
1− ψ(zk, dk−1)

ψ(zk−1, u(zk−1))

)
u(zk) +

(
ψ(zk, u(zk))

ψ(zk−1, u(zk−1))

)
dk−1.

Thus,

dk := u(zk) +

(
ψ(zk, u(zk))

ψ(zk−1, u(zk−1))

)
dk−1 −

ψ(zk, dk−1)

ψ(zk−1, u(zk−1))
u(zk). (3.4)

From (3.4), we can easily deduce that

ψ(zk, dk) ≤ ψ(zk, u(zk)), ∀ k ≥ 1. (3.5)

If we apply exact line search in equation (3.4), it reduces to

dk := u(zk) +

(
ψ(zk, u(zk))

ψ(zk−1, u(zk−1))

)
dk−1.

This is the same as the case when ℓk = 1, in (3.2).

Again, if βk := βCDk in (3.2) and ℓk :=

(
1 − βCDk

ψ(zk,dk−1)
ψ(zk,u(zk))

)
. We can easily deduce

that

ψ(zk, dk) ≤ ψ(zk, u(zk)), ∀ k ≥ 1. (3.6)

Additionally, if βk := βDYk in (3.2) and ℓk :=

(
1 − βDYk

ψ(zk,dk−1)
ψ(zk,u(zk))

)
. We can easily

deduce that

ψ(zk, dk) ≤ ψ(zk, u(zk)), ∀ k ≥ 1. (3.7)

Remark 3.3. Observe that we established sufficient descent conditions for the search
directions of the FR, CD, and DY CG techniques without any line search. In contrast
to the existing results in [37], where the FR could not achieve SDC, while CD and DY
achieved it but with the condition of a strong Wolfe line search.

Theorem 3.4. Let {zk} be generated by Algorithm 1 with βFRk ≥ 0 as defined in (1.9)
and suppose Assumptions 1 and 2 hold. If the Zoutendijk condition (3.1) holds, then

lim inf
k→∞

∥u(zk)∥ = 0. (3.8)

Proof. Suppose we have a constant δ for which

∥u(zk)∥ > δ, for all k ≥ 1. (3.9)

Now, from (3.2), we have

dk = ℓku(zk) + βFRk dk−1, k ≥ 2. (3.10)
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Squaring (3.10) and applying Lemma 2.6(d) with p = ℓk||u(zk)||, q = βFRk ||dk−1||, and
t = 1, we get

||dk||2 ≤
(
ℓk||u(zk)||+ βFRk ||dk−1||

)2

≤ 3ℓ2k||u(zk)||2 +
3

2
(βFRk )2||dk−1||2. (3.11)

≤ 3

(
1− βFRk

ψ(zk, dk−1)

ψ(zk, u(zk))

)2

||u(zk)||2 +
3

2

(
ψ(zk, u(zk))

ψ(zk−1, u(zk−1))

)2

||dk−1||2

= 3

(
1− ψ(zk, dk−1)

ψ(zk−1, u(zk−1))

)2

||u(zk)||2 +
3

2

ψ2(zk, u(zk))

ψ2(zk−1, u(zk−1))
||dk−1||2

≤ 3

(
1 +

2|ψ(zk, dk−1)|
−ψ(zk−1, u(zk−1))

+
ψ2(zk, dk−1)

ψ2(zk−1, u(zk−1))

)
||u(zk)||2

+
3

2

ψ2(zk, u(zk))

ψ2(zk−1, u(zk−1))
||dk−1||2.

By the strong Wolfe condition (2.9), we have

≤ 3

(
1 +

2σ|ψ(zk−1, dk−1)|
ψ(zk−1, u(zk−1))

+
σ2ψ2(zk−1, dk−1)

ψ2(zk−1, u(zk−1))

)
||u(zk)||2

+
3

2

ψ2(zk, u(zk))

ψ2(zk−1, u(zk−1))
||dk−1||2.

By SDC (3.5), we have

≤ 3(1 + 2σ + σ2)||u(zk)||2 +
3

2

ψ2(zk, u(zk))

ψ2(zk−1, u(zk−1))
||dk−1||2.

Divide through by ψ2(zk, dk), we have

∥dk∥2

ψ2(zk, dk)
≤ 3(1 + 2σ + σ2)

∥u(zk)∥2

ψ2(zk, dk)
+

3

2

ψ2(zk, u(zk))

ψ2(zk−1, u(zk−1))

∥dk−1∥2

ψ2(zk, dk)
.

Again, by the SDC (3.5), we have

∥dk∥2

ψ2(zk, dk)
≤ 3(1 + 2σ + σ2)

∥u(zk)∥2

ψ2(zk, u(zk))
+

3

2

∥dk−1∥2

ψ2(zk−1, u(zk−1))
. (3.12)

Now, using Lemma 2.5 (b) and (3.9), we get

∥dk∥2

ψ2(zk, dk)
≤ (1 + 2σ + σ2)

12

δ2
+

3

2

∥dk−1∥2

ψ2(zk−1, u(zk−1))
.

Repeating this continuously, we have

∥dk∥2

ψ2(zk, dk)
≤ (1 + 2σ + σ2)

12k

δ2
+

3

2

∥d1∥2

ψ2(z1, u(z1))
.

Applying Lemma 2.5 (b) and (3.9), we have

∥dk∥2

ψ2(zk, dk)
≤ (1 + 2σ + σ2)

12k

δ2
+

6

δ2
≤ 6

δ2
((2 + 4σ + 2σ2)k + 1).
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Thus,

∞∑
k=1

ψ2(zk, dk)

∥dk∥2
≥ δ2

6

∞∑
k=1

1

((2 + 4σ + 2σ2)k + 1)
= ∞. (3.13)

This is a contradiction. Hence, we have (3.8) which complete the proof.

Theorem 3.5. Let {zk} be generated by Algorithm 1 with βCDk ≥ 0 as defined in (1.10)
and suppose Assumptions 1 and 2 hold. If the Zoutendijk condition (3.1) holds, then

lim inf
k→∞

∥u(zk)∥ = 0. (3.14)

Proof. Suppose we have a constant δ for which

∥u(zk)∥ > δ, for all k ≥ 1. (3.15)

Now, from (3.2), we have

dk = ℓku(zk) + βCDk dk−1, k ≥ 2. (3.16)

Squaring (3.16) and applying Lemma 2.6(d) by using p = ℓk||u(zk)||, q = βCDk ||dk−1||,
and t = 1, we get

||dk||2 ≤
(
ℓk||u(zk)||+ βCDk ||dk−1||

)2

≤ 3ℓ2k||u(zk)||2 +
3

2
(βCDk )2||dk−1||2. (3.17)

≤ 3

(
1− βCDk

ψ(zk, dk−1)

ψ(zk, u(zk))

)2

||u(zk)||2 +
3

2

(
ψ(zk, u(zk))

ψ(zk−1, dk−1)

)2

||dk−1||2

= 3

(
1− ψ(zk, dk−1)

ψ(zk−1, dk−1)

)2

||u(zk)||2 +
3

2

ψ2(zk, u(zk))

ψ2(zk−1, dk−1)
||dk−1||2

≤ 3

(
1+

2|ψ(zk, dk−1)|
−ψ(zk−1, dk−1)

+
ψ2(zk, dk−1)

ψ2(zk−1, dk−1)

)
||u(zk)||2+

3

2

ψ2(zk, u(zk))

ψ2(zk−1, dk−1)
||dk−1||2.

By the SWC (2.9), we have

≤ 3(1 + 2σ + σ2)||u(zk)||2 +
3

2

ψ2(zk, u(zk))

ψ2(zk−1, dk−1)
||dk−1||2.

Applying the SDC (3.6), we get

≤ 3(1 + 2σ + σ2)||u(zk)||2 +
3

2

ψ2(zk, u(zk))

ψ2(zk−1, dk−1)
||dk−1||2.

Divide through by ψ2(zk, dk), we have

||dk||2

ψ2(zk, dk)
≤ 3(1 + 2σ + σ2)

∥u(zk)∥2

ψ2(zk, dk)
+

3

2

ψ2(zk, u(zk))

ψ2(zk−1, dk−1)

∥dk−1∥2

ψ2(zk, dk)
.

Applying SDC (3.6), we have

||dk||2

ψ2(zk, dk)
≤ 3(1 + 2σ + σ2)

∥u(zk)∥2

ψ2(zk, u(zk))
+

3

2

∥dk−1∥2

ψ2(zk−1, u(zk−1))
.
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From (3.12), the results follows and therefore we have
∞∑
k=1

ψ2(zk, dk)

∥dk∥2
≥ δ2

6

∞∑
k=1

1

((2 + 4σ + 2σ2)k + 1)
= ∞. (3.18)

This is a contradiction. Hence, we have (3.14) which complete the proof.

Theorem 3.6. Let {zk} be generated by Algorithm 1 with βDYk ≥ 0 as defined in (1.11)
and suppose Assumptions 1 and 2 hold. If the Zoutendijk condition (3.1) holds, then

lim inf
k→∞

∥u(zk)∥ = 0. (3.19)

Proof. Suppose we have a constant δ for which

∥u(zk)∥ > δ, for all k ≥ 1. (3.20)

Now, from (3.2), we have

dk = ℓku(zk) + βDYk dk−1, k ≥ 2. (3.21)

Squaring (3.21) and applying Lemma 2.6(d) by using p = ℓk||u(zk)||, q = βDYk ||dk−1||,
and t = 1, we get

||dk||2 ≤
(
ℓk||u(zk)||+ βDYk ||dk−1||

)2

≤ 3ℓ2k||u(zk)||2 +
3

2
(βDYk )2||dk−1||2. (3.22)

≤ 3

(
1−βDYk

ψ(zk, dk−1)

ψ(zk, u(zk))

)2

||u(zk)||2+
3

2

(
ψ(zk, u(zk))

ψ(zk, dk−1)− ψ(zk−1, dk−1)

)2

||dk−1||2

= 3

(
1− ψ(zk, dk−1)

ψ(zk, dk−1)− ψ(zk−1, dk−1)

)2

||u(zk)||2

+
3

2

ψ2(zk, u(zk))

(ψ(zk, dk−1)− ψ(zk−1, dk−1))2
||dk−1||2

≤ 3

(
1

1− ψ(zk,dk−1)
ψ(zk−1,dk−1)

)2

||u(zk)||2 +
3

2

ψ2(zk, u(zk))

(ψ(zk, dk−1)− ψ(zk−1, dk−1))2
||dk−1||2

≤ 3

(
1

1− qk

)2

||u(zk)||2 +
3

2

ψ2(zk, u(zk))

(ψ(zk, dk−1)− ψ(zk−1, dk−1))2
||dk−1||2.

where qk = ψ(zk,dk−1)
ψ(zk−1,dk−1)

. By the SWC (2.9) we have qk ∈ [−σ, σ] with 0 < σ < 1. Thus,

||dk||2 ≤ 3

(
1

1 + σ

)2

||u(zk)||2 +
3

2

ψ2(zk, u(zk))

(σ − 1)2ψ2(zk−1, dk−1)
||dk−1||2.

Divide through by ψ2(zk, dk), we have

||dk||2

ψ2(zk, dk)
≤ 3

(1 + σ)2
∥u(zk)∥2

ψ2(zk, dk)
+

3

2

ψ2(zk, u(zk))

ψ2(zk−1, dk−1)

∥dk−1∥2

ψ2(zk, dk)
.

Applying SDC (3.7), we have

||dk||2

ψ2(zk, dk)
≤ 3

(1 + σ)2
∥u(zk)∥2

ψ2(zk, u(zk))
+

3

2

∥dk−1∥2

ψ2(zk−1, u(zk−1))
.
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Now, using Lemma 2.5 (b) and (3.15), we get

∥dk∥2

ψ2(zk, dk)
≤ 1

(1 + σ)2
12

δ2
+

3

2

∥dk−1∥2

ψ2(zk−1, u(zk−1))
.

Repeating this continuously, we have

∥dk∥2

ψ2(zk, dk)
≤ 1

(1 + σ)2
12k

δ2
+

3

2

∥d1∥2

ψ2(z1, u(z1))
.

Applying Lemma 2.5 (b) and (3.15), we have

∥dk∥2

ψ2(zk, dk)
≤ 1

(1 + σ)2
12k

δ2
+

6

δ2
≤ 6

δ2

(
2k + (1 + σ)2

(1 + σ)2

)
.

Thus,
∞∑
k=1

ψ2(zk, dk)

∥dk∥2
≥ δ2

6

∞∑
k=1

(
(1 + σ)2

2k + (1 + σ)2

)
= ∞. (3.23)

This is a contradiction. Hence, we have (3.19) which complete the proof.

4. Numerical experiments

In this section, we report the performance of the proposed techniques. The purpose is
to assess their implementation and robustness in solving benchmark test problems derived
from a wide range of multiobjective optimization research articles in the literature. The
Algorithms were implemented using double precision Fortran 90, and the experiments
were conducted on a PC with the following specifications: Intel Core i5-1135G7 CPU
running at 2.4GHz, and 16 GB of RAM.

Notice that the vector e ∈ Q given in (2.6), always exists. Specifically, for multi-
objective optimization, we take e to be [1, · · · , 1]T ∈ Rm, Q and C are considered as Rm+ ,
and canonical basis of Rm, respectively.

Below, we present a summary of the techniques under consideration, including their
initial parameter values. This encompasses both our proposed techniques and those em-
ployed for comparison purposes:

• DFR: Descent Fletcher-Reeves CG technique;
• DCD: Descent conjugate descent CG technique;
• DDY: Descent Dai-Yuan CG technique.

An essential part of these techniques is the computation of the steepest descent direction,
denoted as u(z). To achieve this, we made use of Algencan, a versatile augmented La-
grangian code designed for solving nonlinear problems [5]. In addition, the selection of the
step size was performed using a line search strategy that satisfies condition (2.9). Below
are the initial parameters utilized in the implementation of our proposed techniques for
these line searches:

• ρ = 10−4, c = 0.7, σ = 10−1.

Furthermore, Lemma 2.5 establishes that z ∈ Rn represents a Q-critical point of F only
if v(z) = 0. Based on this findings, the experimentation process involved executing all

the implemented techniques until the point of convergence, defined as v(z) ≥ −5× eps
1
2 .

Here, v(z) is defined as ψ(z, u(z))+ ∥u(z)∥2

2 , and eps corresponds to the machine precision,
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approximately 2.22×10−16. Alternatively, the process terminates if the maximum number
of iterations, max.It = 5000, is exceeded.

Let us now discuss on the provided tables. Table 1 presents essential information
regarding the selected test problems. In the first column, we have the names of the prob-
lems, such as ”MGH” corresponding to the problem introduced by Mor’e, Garbow, and
Hillstrom in [40], and ”SLC2” aligning with the second problem proposed by Sch”utze,
Lara, and Coello in [43]. The second column indicates the type of problem (convex or
otherwise), the third and Fourth columns, labeled as ”n” and ”m,” respectively, indicate
the variables under consideration and the objectives of the problems. To generate the
starting points, a box constraint was utilized, defined as z1 with the lower and upper
bounds denoted in the fifth column, while the last column shows the corresponding ref-
erences. These results are established by solving each of the test problems 200 times,
using a starting point from uniform random distribution within a defined box defined in
the fifth column of Table 1. The process involved starting from various initial points to
explore the solution space.

Tables 2, 3 and 4 present the results of Algorithm 1 with the modified search direction
of FR, CD, and DY βk parameters, the results are compared with the FR, CD, and DY CG
techniques considered in [37]: “%”, “It”, “Fe”, and “Ge”. In this case, “%” denotes the
percentage of execution that has attained a critical point and for the successful execution,
while “It”, “Fe”, and “Ge” indicate the median number of the 200 runs for the iterations,
functions, and gradients evaluations, respectively. It is important to emphasize that
each evaluation of objective functions or gradient in the corresponding computation is
accounted for in their respective columns. We emphasize that, despite obtaining sufficient
descent conditions without using any line search, our results are not better than those
given in [37] with the usual search directions. This shows that modification of the search
direction in the vector setting may yield good convergence properties but not necessarily
good numerical results.
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Table 1. List of Test Problems

problems convex n m z1 refs

JOS1 ✓ 1000 2 [−10000, 10000]n [29]
SLC2 ✓ 10 2 [−100, 100]n [43]

✓ 500 2 [−100, 100]n [43]
SLCDT1 × 2 2 [−5, 5]n [44]
AP1 ✓ 2 3 [−100, 100]n [3]
AP2 ✓ 2 2 [−100, 100]n [3]
AP3 × 2 2 [−100, 100]n [3]
Lov1 ✓ 2 2 [−100, 100]n [34]
Lov3 × 2 2 [−100, 100]n [34]
Lov4 × 2 2 [−100, 100]n [34]
FDS ✓ 2 3 [−2, 2]n [15]
MMR1 × 2 2 [0, 1]n [39]
MOP1 ✓ 2 2 [−100000, 100000]n [29]
MOP2 × 2 2 [−1, 1]n [29]
MOP3 × 2 2 [−π, π] [29]
MOP5 × 2 3 [−1, 1]n [29]
MOP7 ✓ 2 2 [−400, 400]n [29]
DGO1 ✓ 2 2 [−10, 13]n [29]
MLF1 × 2 2 [−100, 100]n [29]
SP1 ✓ 2 2 [−100, 100]n [29]
SSFYY2 × 2 2 [−100, 100]n [29]
SK1 × 2 2 [−100, 100]n [29]
Hil1 × 2 2 [0, 1]n [27]
KW2 × 2 2 [−3, 3]n [32]
Toi4 ✓ 4 2 [−100, 100]n [46]
Toi8 × 2 2 [−1, 1]n [46]
Toi9 × 4 4 [−100, 100]n [46]
MGH26 × 4 4 [−1, 1]n [40]
MGH33 ✓ 10 10 [−1, 1]n [40]
PNR ✓ 2 2 [−1, 1]n [41]
SLCDT2 ✓ 10 3 [−100, 100]n [44]
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Table 2. DFR and FR techniques results

DFR FR

Problem % It Fe Ge % It Fe Ge

JOS1 100 1 2 4 100 1 2 4
SLC2 (n=10) 100 76 515 459.5 100 21.5 163.5 133
SLC2 (n=500) 100 1195 8419.5 6908 100 140 950 765.5

SLCDT1 100 2 18.5 18.5 100 2 18.5 18.5
AP1 100 851 7686.5 6000.5 100 150.5 1385.5 1104
AP2 100 1 2 4 100 1 2 4
AP3 100 196.5 1379 1020.5 100 58.5 446 355.5
Lov1 100 3 6 8 100 3 6 8
Lov3 100 3 9 11 100 3 9 11
Lov4 100 1 5 7 100 1 5 7
FDS 100 210.5 1933 18.5 100 87 851 737.5

MMR1 100 60.5 426.5 312.5 100 42.5 300.5 224.5
MOP1 100 1 2 4 100 1 2 4
MOP2 100 73.5 499.5 431 100 48 335 305
MOP3 100 14 70 62 100 13.5 64 56
MOP5 100 1 14 16 100 1 14 16
MOP7 100 7 21 24 100 7 21 24
DGO1 100 2 12.5 12.5 100 2 12.5 12.5
MLF1 100 1 7 7.5 100 1 7 7.5
SP1 100 5 10 12 100 6 12 14

SSFYY2 100 1 9 10 100 1 9 10
SK1 100 2 20 20 100 2 20 20
Hil1 100 874.5 6973.5 5471 100 150.5 1011.5 765.5
KW2 100 730.5 7753 5881 100 172 1200 1003.5
Toi4 100 4 37 33 100 4 37 33
Toi8 100 1 7 9 100 1 7 9
Toi9 100 1354 20336 15950.5 100 130.5 1714.5 1290.5

MGH26 100 3 46 41.5 100 3 46.5 41.5
MGH33 100 1 82 71 100 1 82 71
PNR 100 1 3 5 100 1 3 5

SLCDT2 100 495 5056 3983 100 63.5 591.5 514.5
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Table 3. DCD and CD techniques results

DCD CD

Problem % It Fe Ge % It Fe Ge

JOS1 100 1 2 4 100 1 2 4
SLC2 (n=10) 100 20.5 166.5 142.5 100 10 98 85.5
SLC2 (n=500) 100 1202.5 11910 9639 100 49.5 362.5 310

SLCDT1 100 2 16 16 100 2 18.5 18.5
AP1 100 836 7551 5894.5 100 47.5 482.5 432.5
AP2 100 1 2 4 100 1 2 4
AP3 100 22 194 163.5 100 25 217 186.5
Lov1 100 3 6 8 100 3 6 8
Lov3 100 3 9 11 100 3 9 11
Lov4 100 1 5 7 100 1 5 7
FDS 100 207.5 1906 1530.5 100 33.5 332.5 297.5

MMR1 100 58.5 412.5 302.5 100 22.5 160 139
MOP1 100 1 2 4 100 1 2 4
MOP2 100 70.5 480 418 100 23 159.5 146.5
MOP3 100 14 68 60 100 12 56 49.5
MOP5 100 1 14 16 100 1 14 16
MOP7 100 7 21 24 100 7 21 24
DGO1 100 2 12.5 12.5 100 2 12.5 12.5
MLF1 100 1 7 7.5 100 1 7 7.5
SP1 100 5 10 12 100 7.5 15 17

SSFYY2 100 1 9 10 100 1 9 10
SK1 100 2 20 20 100 2 20 20
Hil1 100 737.5 6623.5 5189 100 47.5 326.5 280.5
KW2 100 451 2955 2289 100 52.5 369 323
Toi4 100 4 37 33 100 4 31 28
Toi8 100 1 7 9 100 1 7 9
Toi9 100 1497.5 22652.5 16726.5 100 57.5 751.5 620.5

MGH26 100 3 46 41.5 100 3 44 42
MGH33 100 1 82 71 100 1 82 71
PNR 100 1 3 5 100 1 3 5

SLCDT2 100 135 1198.5 987 100 39.5 413.5 376
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Table 4. DDY and DY techniques results

DDY DY

Problem % It Fe Ge % It Fe Ge

JOS1 100 1 2 4 100 1 2 4
SLC2 (n=10) 100 20.5 166.5 142.5 100 12 123.5 113.5
SLC2 (n=500) 100 477.5 4073 3290 100 35 273 239

SLCDT1 100 2 18 18 100 2 18.5 18.5
AP1 100 836 7551 5894.5 100 32.5 321.5 289.5
AP2 100 1 2 4 100 1 2 4
AP3 100 22.5 195.5 165 100 26.5 210.5 184.5
Lov1 100 3 6 8 100 3 6 8
Lov3 100 3 9 11 100 3 9 11
Lov4 100 1 5 7 100 1 5 7
FDS 100 207.5 1906 1530.5 100 23.5 232.5 207.5

MMR1 100 58.5 412.5 302.5 100 17 121.5 102
MOP1 100 1 2 4 100 1 2 4
MOP2 100 70.5 480 418 100 17.5 115.5 94
MOP3 100 14 68 60 100 11 51.5 47
MOP5 100 1 14 16 100 1 14 16
MOP7 100 7 21 24 100 7 21 24
DGO1 100 2 12.5 12.5 100 2 12.5 12.5
MLF1 100 1 7 7.5 100 1 7 7.5
SP1 100 5 10 12 100 8 16 18

SSFYY2 100 1 9 10 100 1 9 10
SK1 100 2 20 20 100 2 20 20
Hil1 100 737 6623.5 5189 100 32 225.5 203
KW2 100 448.5 2940 2276.5 100 35 242.5 230.5
Toi4 100 4 37 33 100 4 31 28
Toi8 100 1 7 9 100 1 7 9
Toi9 100 1611 23112 16487 100 37 489 424

MGH26 100 3 45.5 40 100 3 45.5 40.5
MGH33 100 1 82 71 100 1 82 71
PNR 100 1 3 5 100 1 3 5

SLCDT2 100 182 1965.5 1630.5 100 30.5 326 283.5

5. Closing Remarks

We have proposed three modified conjugate gradient (CG) techniques for solving vec-
tor optimization problems. Specifically, we have modified the search directions of the
Fletcher-Reeves (FR), conjugate descent (CD), and Dai-Yuan (DY) CG techniques to
obtain their descent property without the use of any line search and to achieve good
convergence properties. We have established the descent property without line search
and achieved global convergence using the Wolfe line search. Additionally, we present
numerical experiments to demonstrate the implementation and efficiency of the proposed
techniques.
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[23] M.L.N. Gonçalves, F.S. Lima, L.F. Prudente, A study of liu-storey conjugate gradient
methods for vector optimization. Applied Mathematics and Computation, 425(2022)
127099.
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