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1. INTRODUCTION

The concept of a metric space was first introduced by Frchet in 1906 [1]. Since then,
mathematicians have explored the existence and uniqueness of fixed points using the
Banach contraction principle, which has been extended to various generalized metric
spaces [2].

Fixed point theory plays a crucial role in nonlinear analysis, particularly in studying the
existence and approximation of solutions for nonlinear functional equations, differential
equations, integral equations, and integro-differential equations. One of the most widely
used metrical fixed point theorems in nonlinear analysis is undoubtedly Banachs contrac-
tion mapping principle, which is based on a symmetric contraction. Given a mapping
T:X — X, there exists a constant ¢ € [0,1) satisfying the condition

d(Tz,Ty) < cd(z,y), for all a,y € X. (1.1)

A point z € X is called a fixed point of T if it satisfies T'(x) = x.

Following this fundamental principle, numerous researchers have generalized it by in-
troducing various types of contractions in metric spaces [3—8]. In particular, Rhoades [9],
compared several contraction conditions defined on metric spaces.

In 2015, Khojasteh, Shukla and Radenovic [10] introduced the concept of a simulation
function( € Z and defined a mapping T : X — X as a Z-contraction, generalizing
Banachs contraction principle. This concept unifies several known types of contractions by
incorporating conditions involving both d(Tx,Ty) and d(z,y) in complete metric spaces,
ultimately proving the existence of a fixed point for T.

Later, in 2021, Berinde and Pacurar [11], established existence and uniqueness results
for fixed points under symmetric contractive-type conditions in convex metric spaces.
Their findings also provided approximation results for certain classes of such mappings.
Further, research on the topic, we refer [12-14].

In this study, we introduce the simulation function { € Z and define a mapping
T: X — X as a (Z,)\)-enriched contraction, where ( € Z and A € [0,1). We then
prove a fixed point existence theorem for 7' in a convex metric space.

2. PRELIMINARIES

In this section, we present some definitions and lemmas that are needed for our main
results presented in section 3.

Definition 2.1. Let X be a nonempty set. A function d : X x X — [0,00) is called a
metric if for z,y,z € X the following conditions are satisfied.

(1) d(x,y) = 0 if and only if x = y;

(12) d(z,y) = d(y, z);

(iid) d(z,2) < d(z,y) + d(y, 2).
The pair (X, d) is called a metric space, and d is called a metric on X.

Definition 2.2. [15] Let (X, d) be a metric space. A continuous function W : X x X x
[0,1] — X is said to be a convex structure on X if, for all z,y € X and any X € [0, 1],
d(u, W(z,y,\)) < Ad(u,z) + (1 — N)d(u,y), for all u € X. (2.1)

A metric space (X, d) endowed with a convex structure W is called a Takahashi convex
metric space and is usually denoted by (X, d, W).
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Definition 2.3. [11] Let (X,d, W) be a convex metric space. A mapping T : X — X is
said to be an enriched contraction if there exist ¢ € [0,1) and A € [0,1) such that

d(W(x, Tz; N), W (y,Ty; N)) < cd(z,y),Yz,y € X. (2.2)

To specify the parameters ¢ and A involved in (2.2), we called T a (A, c¢)-enriched
contraction.

Definition 2.4. [11] Let (X,d,W) be a complex valued metric space. A continuous
function W : X x X x [0,1] — X is said to be a convex structure on X if, for all z,y € X
and any \ € [0,1],

d(u, W(x,y,)) < Ad(u,z) + (1 = Nd(u,y), for all u € X. (2.3)

A metric space (X, d) endowed with a convex structure W is called a complex valued
convex metric space and is usually denoted by (X, d, W).

Lemma 2.5. [11] Let (X,d, W) be a complex valued convex metric space. For allz,y € X
and for all X € [0,1], such that

d(x,y) = d(x, W(z,y, X)) + d(W(z,y, ), y). (2.4)
Lemma 2.6. [11] Let (X, d, W) be a complex valued convex metric space. For allx,y € X
and for all X € [0,1], such that

d(z, W(z,y; A)) = (1 = Nd(z,y) and d(W(z,y; A),y) = Ad(z,y) (2.5)
Definition 2.7. [10] Let ¢ : [0,00) x [0,00) — R be a mapping. Then ( is called a

simulation function if it satisfies the following conditions;
(¢1) ¢(0,0) = 0;
(€2) C(t,s) < s—tforallt,s>0;
(¢€3) if {tn},{sn} are sequence in (0,00) such that lim ¢, = lim s, > 0 then

n—oo n—oo
lim sup {(ty, s,) < 0.
n—oo
We denote the set of all simulation functions by Z.
Definition 2.8. [10] Let (X, d) be a metric space, T : X — X a mapping and ¢ € Z.

Then T is called a Z-contraction with respect to ¢ if the following condition is satisfied
¢(d(Tz,Ty),d(z,y)) >0, forall z,y e X. (2.6)

If T is Z-contraction with respect to ¢ € Z, then d(Tz,Ty) < d(z,y) for all distinct
z,y € X.

From Definition 2.8 we defined some contraction in convex metric space as follows;

Definition 2.9. Let (X,d, W) be a convex metric space, T : X — X a mapping and
¢ € Z,2€[0,1). Then T is called a (Z, A)-enriched contraction with respect to ¢ € Z
and A € [0, 1), if the following condition is satisfied

C(d(W(m,Tx; A), Wiy, Ty; N)), d(x, y)) >0, forallz,yeX. (2.7)
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3. MAIN RESULTS

In this section, we introduce the simulation function ¢ € Z and a mapping 7' : X — X
is a (Z, A)-enriched contraction with respect to ¢ € Z and A € [0,1), and prove the
existance theorem of fixed point of 7" in convex metric space.

Our notion of (¢, A)-enriched contraction simultaneously exploits the flexibility of sim-

ulation functions (cf. [L0]) and the relaxation mechanism of enriched/Krasnosel’skii-type
iterations (cf. [11]).
Compared with classical Z-contractions [2, 10, 11], the parameter A € [0, 1) interpolates

between the Picard step (A = 0) and a relaxed step (A > 0), which can improve stability
on nonexpansive or weakly contractive operators. When ((¢,s) = ¢s — ¢ with ¢ € [0,1)
and W (z,y; A\) = Az+(1— \)y, our results recover Banach-type theorems as special cases,
while allowing a broader range of admissible contractive behaviours encoded by (.
Moreover, the proofs quantify the asymptotic regularity of the relaxed sequence and
clarify how X influences the convergence speed via the one-step decrease inequality.

Theorem 3.1. Let (X,d, W) be a complete convex metric space and let T : X — X be a
(Z,\)-enriched contraction with respect to ¢ € Z and A € [0,1). Let {x,} be a sequence
defined by

Tpy1 = W(xp, Txn; N), n> 0,29 € X. (3.1)

Then lim d(xnq1,z,) =0.
n—oo

Proof. Let zyp € X and {z,} defined in (3.1). Suppose that d(z,41,2,) > 0 for all
n € N. Since

d(@pi1,2n) =d (W (Tpn, Txn; A), W (xn-1,TTn_1;\)). (3.2)
From (3.1), (3.2) and Definition 2.7 ({2), we have
C(A(W @ T 0. W (s, Trami V) (e an)) = C(daran). dlan,z0m)
(3.3)
< d(zp, zp—1) — d(Tpt1,Tn)-
(3.4)
Since, ¢ is a (Z, \)-enriched contraction, from Definition 2.9 and (3.3), we have
¢(d(wnsrzn) d(wn, z0-1)) > 0, (3:5)
and from (3.4), we have
d(Tn, Tn-1) — d(Tpn+1,Tn) > 0, (3.6)
it follows that
d(Tpy1,Tn) < d(@p,zn—1), forallm e N. (3.7

So, the sequence {d(x,+1,2,)} is a decreasing sequence of nonnegative real numbers.
Then, there exists » > 0 such that lim d(x,41,2,) = r. Assume that » > 0. From
n—oo

Definition 2.7 ((3), we replace t,, := d(zp41,Zn) and s, := d(Tn, Tn—1), We see that

nhﬁn;o d(Tpa1,Tn) =1 = nhﬁn;o AT, Tp-1), (3.8)
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it follows that
limsup ¢ (d(@n41,20), d(@n, 20-1)) < 0. (3.9)
n—oo

From (3.5) and (3.9), a contradiction, then r = 0. Therefore, lim d(x,11,2,) = 0.
n—oo

Lemma 3.2. Let (X,d, W) be a complete convex metric space and let T : X — X be a
(Z, \)-enriched contraction with respect to ¢ € Z and X € [0,1). Suppose that 11 # Ty,
for alln € N. Then sequence {x,,} defined in (5.1) is a bounded sequence.

Proof. Assume that {z,} is unbounded. Then there exists a subsequence {z,, } of {z,}
such that ny = 1 and for each k € N, ng11 is the minimum integer such that

d(xnk+1»xnk) > 1, (3.10)
and

d(Tm,Tn,) <1, for ng <m <y, 1. (3.11)
Therefore,

1< d(mnk+1 ) xnk) S d(mnk+1 ) xnk+1*1) + d(xnw—l*lv x’ﬂk)
< d(xnkJrl’xnkJrl—l) +1
Taking k — oo, and Theorem 3.1, we obtain that
kli,n;o Ad(Znyy > Tny,) = 1. (3.12)
From Definition 2.9, we have
0 < C(d<W<xnk+1*17Txnk+1fl;/\);W(wnkflsznkfﬁ)\));d(l'nkJrlflzxnkfl))

= ¢ (d(wnk+1 y Lny )7 d(mnk+1*17 xnkfl))
< d('rnk-pl*l? "Enkfl) - d(xnk+1 ) xnk)’
it follows that
d(xnk+1 ) x""k) < d(znk+1 -1 xnk—l)'
We obtain that

1 <d(@ng, > Tn,) A(Tpyyy—1) Tnjy—1)
d(Tnyyy—1,Tny,) + ATy, Ty —1)
1+d(zn,, Tn—1)-

Taking k — oo and using Theorem 3.1, we have

lim d(2n,,,—1,%n,—1) = 1. (3.13)

k—o0

Since T is a (Z, A)-enriched contraction with respect to ¢ € Z and A € [0,1), (3.12),
(3.13) and Definition 2.7 (¢2), (¢3), we have

ININ A

0

IN

hm Sup C (d(x'nk+1 I Ink ); d(xnk+1—17 xnk—1)>

k— oo
< limsup [d(xnkﬂ,l, Tpp—1) — d(wnkJrl,acnk)]
k—oc0

< 0.

A contradiction. Therefore, {z,} is a bounded sequence.
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Theorem 3.3. Let (X,d, W) be a complete convex metric space and let T : X — X be
a (Z,N)-enriched contraction with respect to ¢ € Z and A € [0,1). Then T has a fized
point.

Proof. Let z¢ € X, if there exists m € N such that z,, = 2,41, then
0 = d@m,Tms1)
= d(@m, W(xm, Txm; \))
= M(@m,Tm) + (1 = N)d(@pm, Txm)
(1 =N d(xm, Txm)
Sod(xg, Tzy) = 0,

it implies that z,, is a fixed point of T". So, we can suppose that x, 1 # x, for all n € N.
Let

D,, = sup{d(z;,x;) :4,j > n,n € N}. (3.14)
By Lemma 3.2, we have {z,} is bounded sequence, it follows that D,, < oo for any n € N
and {D,} is a positive decreasing sequence, there exists d > 0 such that

lim D, =d. (3.15)

n—oo

Assume that d > 0. From definition of D, for each k € N there exists ng, my € N such
that mg > ni > k and

1
Dy — E < d(xmk,xnk) > Dy.. (316)
Hence,
le A(Timy, s Ty, ) = d. (3.17)

From Definition 2.9 and Definition 2.7 ((2), we have
0 < C(AW (@1, Ty =150, W (20,1, T, 1), (@12, -1))

= C(d(zmk,xnk),d(xmk_l,znk_l))
< d@my—1,Tn—1) — A Tmy, Tny),
it follows that
ATy s Tny,) < A XTpy—1, Tny—1)
< A @my—1, Tmy ) + A Xy, Ty, ) + d(Tpy s Ty —1)-

Taking k — oo and Theorem 3.1, we have

d= lim d(zpm,,zn,) < lm d(Tm,—1,%n,-1)
k— oo k— oo

< lim d(Tmy—1,Tm,, ) + lim d(Tm,, Tn,) + Im d(@n, , Tn,—1)
k—o0 k—o0 k— o0

= lim d(zm,,zn,) =d,
k—o0
it implies that
lim d(xmk_l,xnk_l) =d. (318)

k—o0
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Since T isa (£, A)-enriched contraction with respect to ¢ € Z and A € [0, 1), (3.17), (3.18)
and Definition 2.7 ({3), we have

0< limsupC(d(xmk,l,mnk,l), d(xmk,xnk)) < 0.

k—o0
A contradiction, it follows that d = 0. Then lim D,, = 0. Therefore, {z,} is a Cauchy
n—o0
sequence. Since (X, d, W) is a complete, there exists p € X such that lim z, = p.
n—oo

Now, we shall prove that p € Fiz(T). Assume that p # Tp, then d(p, Tp) > 0. Using,
Definition 2.9 and Definition 2.7 ({2), we have

0 < C(dOW (@n, Twa; N), W (p, T V) (s )
d(n,p) — AW (2, Tzn; ), W(p, Tp; N))
= d(zn,p) — [d(gjn+17 W(p, Tp; A))},

taking n — oo, it follows that

A

0 < limsup ¢ (d(W (e, Torn; N), W(p, Tp; V), d(zn. )

n—oo

< limsup (d(xn,p) - {d(%"n—s-l, W (p, T'p; )\))D

n—co
= —d(p,W(p.Tp; \))
= —(1=XNd(p,Tp).
A contradiction. Therefore, p is a fixed point of T.
Finally, we define a mapping (. : [0,00) X [0,00) = R by
Ce(t,s) =cs—t, forall s te|0,00). (3.19)
We see that

(1) €c(0,0) = ¢(0) =0 =0,

(2) C(t,8) =cs—t<s—t, c€[0,1),

(3) if {tn}, {tn} € [0,00) with lim ¢, =r = lim s,,r > 0 we have
n—oo n— oo

lim sup (. (tn, $n) = limsup(cs, — t,), (3.20)

n—oo n—o0

we see that, if ¢ = 0 and (3.20), we have

limsup (. (tn, $n) = limsup(—t,) <0,

n—oo n—oo

if 0 < ¢ <1 and (3.20), we have

lim sup (o (tn, $n) < limsup(s, — t,) = 0.

n—oo n— oo

Hence, (. € Z.
Corollary 3.4. Under the assumptions of Theorem 3.3, the fixed point of T is unique.

Proof. Suppose p,q € X are fixed points of T. Using the ({, A)-enriched contraction
inequality with x = p and y = ¢, and the fact that Tpp = p and T'q = ¢, we obtain

AW (p,Tp; N), W(q, Tq; M), d(p,q)) > 0.
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Because W (p, Tp; \) = W(p,p; A) = pand W (q, T'q; ) = ¢, this becomes ((d(p, q), d(p, q)) >
0. By the defining properties of a simulation function, this is possible only when d(p, q) =
0; hence p = q.

Corollary 3.5. Let (X,d, W) be a complete convex metric space and let T : X — X be
a (Z,c)-enriched contraction. Then T has a fized point in X.

Proof. Taking ¢ = (. in Theorem 3.3, we have T is a (£, A)-enriched contraction with
respect to (. € Z and X € [0,1). Therefore, T has a fixed point in X.

The following example support our theorem 3.3.

Example 3.6. Let X = [0,1] and d be a Euclidean metric on X. Set W(z,y,\) =
Az 4+ (1 — Ny for any A € [0,1). Then (X, d, W) is a complete convex metric space.

Let us define T: X — X by Te =1 — 2 and ((t,s) = cs — t.

Then, the mapping T satisfies all the conditions of theorem 3.3, with A = % and for
¢ € (0,1) (if the case ¢ = 0 is admitted, then take ¢ € [0,1)) and hence admit a fixed

point p = %
Remark 3.7. The above toy example illustrates the mechanism; in Section 4 we include
more substantive applications where the enriched step is indispensable.

Theorem 3.8. Let (X,d, W) be a convex metric space endowed with a directed graph
G=(X,&), and let T : X — X be a self-mapping such that:
(1) T is a ({, A)-enriched contraction with respect to some simulation function ( € Z
and A € [0,1);
(2) there exists xo € X such that the iterative sequence {x,} defined by
Tnyl = W(xna Txy; >\)7
satisfies (xr, Tni1) € € for alln € N.
Then {x,} converges to a fized point p € X, and this fixed point is the limit of a walk in
the graph G.

Proof. Let xg € X be given, and define the sequence {z,} by
Tpae1 = W(xp, Txy; ), for alln € N,
Since T is a (¢, A)-enriched contraction, we can apply Theorem 3.1 to conclude that

Jim d(zn41,20) = 0,

and that the sequence {z,} is Cauchy in X. As (X,d) is complete, there exists p € X
such that x, — p as n — oco. We next show that p is a fixed point of 7. From the
recursive definition and the continuity of W and 7', we have

Tn+l = W((ﬂn, Txy; )‘) — W(pa T'p; )‘)
On the other hand, x,, 41 — p implies that
W(p,Tp; \) = p.
Since W is the convex combination map with parameter A € (0,1), it follows that p = T'p.
Thus, p is a fixed point of 7.
Finally, by assumption, we have (x,,x,+1) € &€ for all n € N. Hence, the sequence

{z,} defines a walk in the graph G converging to the fixed point p.
This completes the proof.
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4. APPLICATIONS AND NUMERICAL EXAMPLES

We illustrate the applicability of the ({, A)-enriched scheme via two simple models.
Throughout we take W(x,y; A) = Az + (1 — M)y and ((t,s) = ¢s — t with ¢ € [0, 1).

Example 4.1. (Fixed point form of an ODE steady state) Consider the scalar ODE
& = —x+cosz. A steady state satisfies x = cosz, i.e., the fixed point equation x = T'(x)
with T'(z) = cosz on X = [0,1]. Starting from z¢ = 0, define 2,11 = W (xy, Txp; A) with
A = 0.3. The generated errors e,, = |2, — | (with z, & 0.739085) decay monotonically;
see Figure 1.

Relaxed iteration for x = cos x (lambda=0.3)

Error |x_n - x*|
o o I o o o
N w S (%] o ~

©
i

o
=)

Iteration n

FIGURE 1. Error decay per iteration for the relaxed iteration mapping
T(x) = cosx with A = 0.3. The x-axis represents iteration count and the
y-axis represents error magnitude.

Example 4.2. (Convex feasibility via alternating relaxed steps) Let Cy = [0,0.8] and
Cy =[0.3,1] C R. Consider the composition T' = Pg, o Pg, of metric projections. With
zo = 1, the relaxed iteration x,11 = W(x,, Tz,; \) with A = 0.5 converges to a point in
Cy N Cy =10.3,0.8]; the error trajectory is shown in Figure 2.
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Relaxed alternating projections onto [0,0.8] and [0.3,1] (lambda=0.5)
0.200}

0.175¢

0.150

o
i
N
&)

0.100

Error |x_n - x*|

o
o
~
%]

0.050

0.025

o000 Tttt

Iteration n

F1GURE 2. Convergence trajectory of the relaxed projection scheme onto
C1 N Cy. The x-axis and y-axis represent coordinate values in RZ.

5. CONCLUSION

In this paper, we introduce a novel concept of (£, A)-Enriched Contraction with respect
to ¢ € Z and X € [0,1) which generalize the Banach contraction principle.To illustrate
our results, we present specific cases with supportive examples. it will be interesting to
extend the obtain results in other generalized spaces such as: probabilistic, fuzzy, or cone
metric spaces.
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