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1. Introduction and preliminaries

This section provides a brief historical overview of some evolution of the metric fixed
point theory, which inspired us to write this article. The first famous metric fixed point
result, named the Banach contraction principle, stated that if T is a self-mapping defined
on a complete metric space (X, d) satisfying

d (Tx, Ty) ≤ δd (x, y) (1.1)

for all x, y ∈ X, where 0 ≤ δ < 1, then T has a unique fixed point, that is, there exists a
unique point z ∈ X such that Tz = z. This result was established by Banach [1] in 1922
and is used to prove the existence and uniqueness of a solution for an integral equation
under the appropriate conditions. Furthermore, it can be used to guarantee the existence
of solutions for various mathematical equations, including ordinary differential equations,
partial differential equations, fractional differential equations, matrix equations, and func-
tional equations. Nowadays, the Banach contraction principle is the most classical metric
fixed point result, which serves as a motivation for many famous fixed point results in
this era.

Next, we provide a brief history of other famous metric fixed point results. For instance,
Kannan [2] and Chatterjea [3] introduced the contractive conditions, which are separated
from the Banach contractive condition as follows:

Definition 1.1 ([2, 3]). Let T be a self-mapping defined on a metric space (X, d) and

d(Tx, Ty) ≤ kA(x, y) (1.2)

for x, y ∈ X, where k ∈ [0, 1/2) and A : X ×X → [0,∞) is a given function.

(1) If A is defined by A(x, y) = d(x, Tx) + d(y, Ty) for all x, y ∈ X, then T is called
a Kannan contraction mapping (see [2]).

(2) If A is defined by A(x, y) = d(x, Ty) + d(y, Tx) for all x, y ∈ X, then T is called
a Chatterjea contraction mapping (see [3]).

Kannan [2], and Chatterjea [3] also claimed that each of the Kannan contraction map-
pings and Chatterjea contraction mappings has a unique fixed point if its domain is
complete. These results are known as the Kannan fixed point theorem and the Chatter-
jea fixed point theorem, respectively. These results are not an enlargement of the Banach
contraction principle. Afterward, Dass and Gupta [4] introduced a new contractive con-
dition, named the rational contractive condition, which differs from the Banach, Kannan,
and Chatterjea contractive conditions. Similarly, Jaggi [5] introduced the other rational
contractive condition as follows:

Definition 1.2 ([5]). Let (X, d) be a complete metric space. A mapping T : X → X
is called a rational type contraction mapping if it is continuous and there are constants
α, β ∈ [0, 1) such that α+ β < 1 and

d(Tx, Ty) ≤ αd(x, Tx)d(y, Ty)

d (x, y)
+ βd (x, y) (1.3)

for all x, y ∈ X with x ̸= y.

Following the introduction of the above definition, numerous researchers have investi-
gated fixed point results under the contractive condition of rational type in metric spaces
(see [6, 7] and the references therein).
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On the other hand, Istrăţescu ([8–10]) introduced the convex contractive condition
that does not imply the Banach contractive condition. Still, the existence and uniqueness
of the fixed point for mappings satisfying such a condition are assured. The mentioned
convex contractive condition is as follows:

Definition 1.3 ([8]). Let (X, d) be a metric space. A mapping T : X → X is called a
convex contraction mapping if it is continuous and there are constants a, b ∈ [0, 1) such
that a+ b < 1 and

d(T 2x, T 2y) ≤ ad(Tx, Ty) + bd(x, y) (1.4)

for all x, y ∈ X.

Our destinations in this paper are to introduce new contractive conditions inspired
by the ideas of convex contraction mappings and rational contraction mappings and to
provide the existence and uniqueness results of a fixed point for each proposed contraction
mapping in complete metric space. Many illustrative examples are provided to validate
the main results, while numerous famous fixed point results in the literature cannot be
applied to these examples. All presented examples yield the effectiveness of our contractive
condition. Moreover, the application of our theoretical fixed point results to establish the
existence of a solution for a nonlinear implicit integral equation is demonstrated in the
final section.

2. Fixed point results

In this section, we introduce the concept of a new generalization of Banach contraction
mappings, inspired by the idea of convex contraction mappings in Definition 1.3, in terms
of rational expressions, and prove fixed point results for such contractions.

Definition 2.1. Let (X, d) be a metric space. A mapping T : X → X is called a rational
I1-contraction mapping if there are constants α, β ∈ [0, 1) such that α+ β < 1 and

d(T 2x, T 2y) ≤ αd(Tx, Ty) +
βd(Tx, Ty)d(x, Tx)

d(x, y)
(2.1)

for all x, y ∈ X with x ̸= y.

It can be easily seen that each Banach contraction mapping with the Banach contractive
constant k ∈ [0, 1) is a rational I1-contraction mapping with constants α := k and β := 0.

Theorem 2.2. Let (X, d) be a complete metric space and T : X → X be a rational
I1-contraction mapping. Suppose that T is continuous. Then T has a unique fixed point.
Moreover, for each x0 ∈ X, the Picard iteration {xn}, which is defined by xn = Txn−1

for all n ∈ N, converges to a fixed point of T .

Proof. Let x0 ∈ X. Define the Picard sequence {xn} in X by

xn = Txn−1

for all n ∈ N. If xn = xn−1 for some n ∈ N, then xn−1 is a fixed point of T. Hence,
we may assume that xn ̸= xn−1 for all n ∈ N. Let k := α + β ∈ [0, 1), where α, β are
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constants defined in Definition 2.1. From (2.1), for each n ∈ N with n ≥ 2, we have

d(xn, xn+1) = d(T 2xn−2, T
2xn−1)

≤ αd(Txn−2, Txn−1) +
βd(Txn−2, Txn−1)d(xn−2, Txn−2)

d(xn−2, xn−1)

= αd(xn−1, xn) +
βd(xn−1, xn)d(xn−2, xn−1)

d(xn−2, xn−1)

= αd(xn−1, xn) + βd(xn−1, xn)

= (α+ β) d(xn−1, xn)

= kd(xn−1, xn)

...

≤ knd(x0, x1).

For each m,n ∈ N such that 2 ≤ n < m, we have

d(xn, xm) ≤ d (xn, xn+1) + d (xn+1, xn+2) + d (xn+2, xn+3) + · · ·+ d (xm−1, xm)

≤ knd (x0, x1) + kn+1d (x0, x1) + kn+2d (x0, x1) + · · ·+ km−1d (x0, x1)

=
(
kn + kn+1 + kn+2 + · · ·+ km−1

)
d (x0, x1)

≤
(
kn + kn+1 + kn+2 + · · ·

)
d (x0, x1)

=
kn

1− k
d (x0, x1) . (2.2)

By taking the limit as m,n → ∞ in (2.2), we have d(xn, xm) → 0. This is enough to
conclude that {xn} is a Cauchy sequence in X. The completeness of X implies that
xn → z as n → ∞ for some z ∈ X. Since T is the continuous, we have

Tz = T
(
lim
n→∞

xn

)
= lim

n→∞
(Txn) = lim

n→n
xn+1 = z.

Then z is a fixed point of T . Finally, we will prove that T has a unique fixed point.
Suppose that w is another fixed point of T with z ̸= w. Then we obtain

d (z, w) = d (Tz, Tw)

= d
(
T 2z, T 2w

)
≤ αd(Tz, Tw) +

βd (Tz, Tw) d (z, Tz)

d (z, w)

≤ αd(z, w)

< d(z, w),

which is a contradiction. Therefore, T has a unique fixed point. This completes the proof.

The following example will describe the situation that Theorem 2.2 can guarantee
the existence and uniqueness of a fixed point while the Banach contraction principle [1],
Kannan fixed point theorem in [2], Chatterjea fixed point theorem in [3], the Jaggi fixed
point theorem in [5], and Istrăţescu fixed point theorem in [8] cannot be applied.
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Example 2.3. Let X =
[
0, 12

11

]
, d be a usual metric on X and T : X → X be defined by

Tx =
x6

2
for all x ∈ X. From the definition of T, we get

T 2x =
x36

128
for all x ∈ X.

First, we will show that the Banach contraction principle cannot be applied in this
example. To show this, we will claim that T is not a Banach contraction mapping.
Indeed, for x = 0.509 and y = 1, we get

d(Tx, Ty) =

∣∣∣∣∣ (0.509)62
− 1

2

∣∣∣∣∣ > 0.491 > k (0.491) = kd(x, y)

for all k ∈ [0, 1). It yields that T is not a Banach contraction mapping. Therefore, the
Banach contraction principle is not applicable in this situation.

Second, we will show that the Kannan fixed point theorem cannot be applied in this
example. To show this, we will claim that T is not a Kannan contraction mapping.
Indeed, for x = 0.4928 and y = 1, we get

d (Tx, Ty) =

∣∣∣∣∣ (0.4928)62
− 1

2

∣∣∣∣∣
> 0.492838

=
1

2
(0.985676)

> k(0.985676)

> k

[∣∣∣∣∣0.4928− (0.4928)
6

2

∣∣∣∣∣+
∣∣∣∣1− 1

2

∣∣∣∣
]

= k

[∣∣∣∣x− x6

2

∣∣∣∣+ ∣∣∣∣y − y6

2

∣∣∣∣]
= k[d(x, Tx) + d(y, Ty)]

for all k ∈
[
0, 1

2

)
. It yields that T is not a Kannan contraction mapping. Therefore, the

Kannan fixed point theorem is not helpful in this situation.
Third, we will show that the Chatterjea fixed point theorem cannot be applied in this

example. To show this, we will claim that T is not a Chatterjea contraction mapping.
Indeed, for x = 0.252 and y = 1.09, we get

d (Tx, Ty) =

∣∣∣∣∣ (0.252)62
− (1.09)

6

2

∣∣∣∣∣
> 0.8384

=
1

2
(1.6768)

> k(1.6768)

> k

[∣∣∣∣∣0.252− (1.09)
6

2

∣∣∣∣∣+
∣∣∣∣∣1.09− (0.252)

6

2

∣∣∣∣∣
]
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= k

[∣∣∣∣x− y6

2

∣∣∣∣+ ∣∣∣∣y − x6

2

∣∣∣∣]
= k[d(x, Ty) + d(y, Tx)]

for all k ∈
[
0, 1

2

)
, this implies that T does not satisfy the conditions of a Chatterjea

contraction. Consequently, the classical Chatterjea fixed point theorem is not applicable
in this setting.

Fourth, we will show that the Jaggi fixed point theorem cannot be applied in this
example. To show this, we will claim that T is not a rational type contraction mapping.
Indeed, for x = 0.5 and y = 1.09, we get

d (Tx, Ty) =

∣∣∣∣∣ (0.5)62
− (1.09)

6

2

∣∣∣∣∣
> 0.83

>

∣∣∣0.5− (0.5)6

2

∣∣∣ ∣∣∣1.09− (1.09)6

2

∣∣∣
|0.5− 1.09|

+ |0.5− 1.09|

=
α
∣∣∣x− x6

2

∣∣∣ ∣∣∣y − y6

2

∣∣∣
|x− y|

+ β |x− y|

>
αd(x, Tx)d(y, Ty)

d (x, y)
+ βd (x, y)

for all α, β ∈ [0, 1) such that α + β < 1. This implies that T is not a rational-type
contraction mapping. Therefore, the Jaggi fixed point theorem is not applicable in this
situation.

Fifth, we will show that the Istrăţescu fixed point theorem cannot be applied in this
example. To show this, we will claim that T is not a convex contraction mapping. Indeed,
for x = 1.0885 and y = 1.09, we get

d
(
T 2x, T 2y

)
=

∣∣∣∣∣ (1.0885)36128
− (1.09)

36

128

∣∣∣∣∣
> 0.008407

>

∣∣∣∣∣ (1.0885)62
− (1.09)

6

2

∣∣∣∣∣+ |1.0885− 1.09|

> a

∣∣∣∣x6

2
− y6

2

∣∣∣∣+ b |x− y|

= ad(Tx, Ty) + bd(x, y)

for all a, b ∈ [0, 1) with a+ b < 1. It yields that T is not a convex contraction mapping.
Therefore, the Istrăţescu fixed point theorem is not applicable is this situation.
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Finally, we will demonstrate that Theorem 2.2 guarantees the existence and uniqueness
of a fixed point of T . It is easy to verify that T is continuous and that the space X is
complete. Next, we will show that T is a rational I1-contraction mapping with constants
α = 1

3 and β = 1
2 . To this end, let x, y ∈ X with x ̸= y. We divide the proof into three

cases.

Case 1 : If x, y ∈
[
0, 12

11

)
, then

d(T 2x, T 2y) =

∣∣∣∣x36

128
− y36

128

∣∣∣∣
=

1

128

∣∣x36 − y36
∣∣

≤ 1

2

∣∣∣∣x6

2
− y6

2

∣∣∣∣+ 1
3

∣∣∣x6

2 − y6

2

∣∣∣ ∣∣∣x− x6

2

∣∣∣
|x− y|

= αd(Tx, Ty) +
βd(Tx, Ty)d(x, Tx)

d(x, y)
.

Figure 1 shows the validity of the above showing. In this figure, the blue surface
is a function [

0,
12

11

)2

∋ (x, y) 7→
∣∣∣∣x36

128
− y36

128

∣∣∣∣
and the red surface is a function

[
0,

12

11

)2

∋ (x, y) 7→ 1

2

∣∣∣∣x6

2
− y6

2

∣∣∣∣+ 1
3

∣∣∣x6

2 − y6

2

∣∣∣ ∣∣∣x− x6

2

∣∣∣
|x− y|

.
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Figure 1. Showing the validity for Case 1 in Example 2.3.
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Case 2: If x ∈
[
0, 12

11

)
and y = 12

11 , then

d(T 2x, T 2y) =

∣∣∣∣∣x36

128
−
(
12
11

)36
128

∣∣∣∣∣
=

1

128

∣∣∣∣∣x36 −
(
12

11

)36
∣∣∣∣∣

≤ 1

2

∣∣∣∣∣x6

2
−
(
12
11

)6
2

∣∣∣∣∣+
1
3

∣∣∣∣x6

2 − ( 12
11 )

6

2

∣∣∣∣ ∣∣∣x− x6

2

∣∣∣∣∣x− 12
11

∣∣
= αd(Tx, Ty) +

βd(Tx, Ty)d(x, Tx)

d(x, y)
.

Figure 2 shows the validity of the above showing. In this figure, the solid line is
the graph of a function

[
0,

12

11

)
∋ x 7→

∣∣∣∣∣x36

128
−
(
12
11

)36
128

∣∣∣∣∣
and the dash line is the graph of a function

[
0,

12

11

)
∋ x 7→ 1

2

∣∣∣∣∣x6

2
−
(
12
11

)6
2

∣∣∣∣∣+
1
3

∣∣∣∣x6

2 − ( 12
11 )

6

2

∣∣∣∣ ∣∣∣x− x6

2

∣∣∣∣∣x− 12
11

∣∣ .

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

The value of x

The values of the two relevant functions

Figure 2. Showing the validity for Case 2 in Example 2.3.
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Case 3: If x = 12
11 and y ∈

[
0, 12

11

)
, then

d(T 2x, T 2y) =

∣∣∣∣∣
(
12
11

)36
128

− y36

128

∣∣∣∣∣
=

1

128

∣∣∣∣∣
(
12

11

)36

− y36

∣∣∣∣∣
≤ 1

2

∣∣∣∣∣
(
12
11

)6
2

− y6

2

∣∣∣∣∣+
1
3

∣∣∣∣ ( 12
11 )

6

2 − y6

2

∣∣∣∣ ∣∣∣∣ 1211 − ( 12
11 )

6

2

∣∣∣∣∣∣ 12
11 − y

∣∣
= αd(Tx, Ty) +

βd(Tx, Ty)d(x, Tx)

d(x, y)
.

Figure 3 shows the validity of the above showing. In this figure, the solid line is
the graph of a function[

0,
12

11

)
∋ y 7→

∣∣∣∣∣
(
12
11

)36
128

− y36

128

∣∣∣∣∣
and the dash line is the graph of a function

[
0,

12

11

)
∋ y 7→ 1

2

∣∣∣∣∣
(
12
11

)6
2

− y6

2

∣∣∣∣∣+
1
3

∣∣∣∣ ( 12
11 )

6

2 − y6

2

∣∣∣∣ ∣∣∣∣ 1211 − ( 12
11 )

6

2

∣∣∣∣∣∣ 12
11 − y

∣∣ .

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

The value of y

The values of the two relevant functions

Figure 3. Showing the validity for Case 3 in Example 2.3.

From all the above cases, we conclude that inequality (2.1) holds for all x, y ∈ X. This
implies that T is a rational I1-contraction mapping. Therefore, all the conditions of
Theorem 2.2 are satisfied, and the existence and uniqueness of a fixed point of T follows
directly from Theorem 2.2.

Theorems 2.4, 2.5 and 2.6 can be proved by using a similar argumentation as in the
proof of Theorem 2.2.
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Theorem 2.4. Let (X, d) be a complete metric space. Suppose that T : X → X is
continuous and there are constants α, β ∈ [0, 1) such that α+ β < 1 and

d(T 2x, T 2y) ≤ αd(Tx, Ty) +
βd(y, Tx)d(y, Ty)

d(Tx, Ty)
(2.3)

for all x, y ∈ X with Tx ̸= Ty. Then T has a fixed point. Moreover, for each x0 ∈ X, the
Picard iteration {xn}, which is defined by xn = Txn−1 for all n ∈ N, converges to a fixed
point of T .

Theorem 2.5. Let (X, d) be a complete metric space. Suppose that T : X → X is
continuous and there are constants α, β ∈ [0, 1) such that α+ β < 1 and

d(T 2x, T 2y) ≤ αd(Tx, Ty) +
βd(x, Tx)d(y, Ty)

d(x, y)
(2.4)

for all x, y ∈ X with Tx ̸= Ty. Then T has a fixed point. Moreover, for each x0 ∈ X, the
Picard iteration {xn}, which is defined by xn = Txn−1 for all n ∈ N, converges to a fixed
point of T .

Theorem 2.6. Let (X, d) be a complete metric space. Suppose that T : X → X is
continuous and there are constants α, β ∈ [0, 1) such that α+ β < 1 and

d(T 2x, T 2y) ≤ αd(Tx, Ty) +
βd(Tx, Ty)d(x, y)

d(x, Tx)
(2.5)

for all x, y ∈ X with x ̸= Tx. Then T has a fixed point. Moreover, for each x0 ∈ X, the
Picard iteration {xn}, which is defined by xn = Txn−1 for all n ∈ N, converges to a fixed
point of T .

Next, inspired by the concept of convex contraction mappings, we introduce a new
rational type of convex contraction that does not satisfy the classical Banach contractive
condition. The existence and uniqueness of fixed points for such mappings are established
through alternative techniques, as demonstrated in Theorems 2.2, 2.4, 2.5, and 2.6.

Definition 2.7. Let (X, d) be a metric space. A mapping T : X → X is called a rational
I2-contraction mapping if there are constants α, β ∈ [0, 1) such that α+ β < 1 and

d(T 2x, T 2y) ≤ αd (x, y) +
βd(Tx, Ty)d(x, Tx)

d(x, y)
(2.6)

for all x, y ∈ X with x ̸= y.

Example 2.8. Let X = [0, 1], d be a usual metric on X and T : X → X be defined by

Tx =


x2

10
if x ∈ [0, 1)

1

2
if x = 1.

From the definition of T, we get

T 2x =


x4

1000
if x ∈ [0, 1)

1

40
if x = 1.
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We will show that T is a rational I2-contraction mapping with constants α = 1
2 and

β = 1
3 . Suppose that x, y ∈ X with x ̸= y. We will divide our showing into 3 cases.

Case 1: If x, y ∈ [0, 1) , then

d
(
T 2x, T 2y

)
=

∣∣∣∣ x4

1000
− y4

1000

∣∣∣∣
=

1

1000

∣∣x4 − y4
∣∣

=
1

500

∣∣x4 − y4
∣∣− 1

1000

∣∣x4 − y4
∣∣

=
1

500

∣∣x4 − y4
∣∣+ 1

3

∣∣∣x2

10 − y2

10

∣∣∣ ∣∣∣x− x2

10

∣∣∣
|x− y|

=

∣∣x2 − y2
∣∣

100

∣∣x2 + y2
∣∣

5
+

1
3

∣∣∣x2

10 − y2

10

∣∣∣ ∣∣∣x− x2

10

∣∣∣
|x− y|

≤ 1

100

∣∣x2 − y2
∣∣+ 1

3

∣∣∣x2

10 − y2

10

∣∣∣ ∣∣∣x− x2

10

∣∣∣
|x− y|

=
|x− y|
10

|x+ y|
10

+

1
3

∣∣∣x2

10 − y2

10

∣∣∣ ∣∣∣x− x2

10

∣∣∣
|x− y|

≤ 1

10
|x− y|+

1
3

∣∣∣x2

10 − y2

10

∣∣∣ ∣∣∣x− x2

10

∣∣∣
|x− y|

≤ 1

2
|x− y|+

1
3

∣∣∣x2

10 − y2

10

∣∣∣ ∣∣∣x− x2

10

∣∣∣
|x− y|

= αd (x, y) +
βd(Tx, Ty)d(x, Tx)

d(x, y)
.

The validity of the above showing is demonstrated in Figure 4, which presents two
different viewpoints of the surface. In this figure, the blue surface is a function

[0, 1)
2 ∋ (x, y) 7→

∣∣∣∣ x4

1000
− y4

1000

∣∣∣∣
and the red surface is a function

[0, 1) ∋ x, y 7→ 1

2
|x− y|+

1
3

∣∣∣x2

10 − y2

10

∣∣∣ ∣∣∣x− x2

10

∣∣∣
|x− y|

.
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Figure 4. Showing the validity for Case 1 in Example 2.8.

Case 2: If x = 1 and y ∈ [0, 1) , then

d
(
T 2x, T 2y

)
=

∣∣∣∣ 140 − y4

1000

∣∣∣∣
=

∣∣∣∣ 1

1000
− y4

1000
+

24

1000

∣∣∣∣
≤

∣∣∣∣ 1

1000
− y4

1000

∣∣∣∣+ 24

1000

=
1

1000

∣∣1− y4
∣∣+ 24

1000

≤ 1

100

∣∣1− y2
∣∣+ 24

1000

≤ 1

10
|1− y|+ 24

1000

≤ 1

2
|1− y|+ 1

12

=
1

2
|1− y|+

1
3

∣∣ 1
2 − 0

∣∣ ∣∣1− 1
2

∣∣
|1− 0|

≤ 1

2
|1− y|+

1
3

∣∣∣ 12 − y2

10

∣∣∣ ∣∣1− 1
2

∣∣
|1− y|

= αd (x, y) +
βd(Tx, Ty)d(x, Tx)

d(x, y)
.

Figure 5 shows the validity of the above showing. In this figure, the solid line is
the graph of a function

[0, 1) ∋ y 7→
∣∣∣∣ 140 − y4

1000

∣∣∣∣
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and the dash line is the graph of a function

[0, 1) ∋ y 7→ 1

2
|1− y|+

1
3

∣∣∣ 12 − y2

10

∣∣∣ ∣∣1− 1
2

∣∣
|1− y|

.
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0.2
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0.6
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1

The value of y

The values of the two relevant functions

Figure 5. Showing the validity for Case 2 in Example 2.8.

Case 3: If x ∈ [0, 1) and y = 1, then

d
(
T 2x, T 2y

)
=

∣∣∣∣ x4

1000
− 1

40

∣∣∣∣
=

∣∣∣∣ x4

1000
− 1

1000
− 24

1000

∣∣∣∣
≤

∣∣∣∣ x4

1000
− 1

1000

∣∣∣∣+ 24

1000

=
1

1000

∣∣x4 − 1
∣∣+ 24

1000

≤ 1

100

∣∣x2 − 1
∣∣+ 24

1000

≤ 1

10
|x− 1|+ 24

1000

=
1

2
|x− 1|+ 24

1000
− 2

5
|x− 1|

≤ 1

2
|x− 1|+

1
3

∣∣∣x2

2 − 1
2

∣∣∣ ∣∣∣x− x2

10

∣∣∣
|x− 1|

= αd (x, y) +
βd(Tx, Ty)d(x, Tx)

d(x, y)
.

Figure 6 shows the validity of the above showing. In this figure, the solid line is
the graph of a function

[0, 1) ∋ x 7→
∣∣∣∣ x4

1000
− 1

40

∣∣∣∣
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and the dash line is the graph of a function

[0, 1) ∋ x 7→ 1

2
|x− 1|+

1
3

∣∣∣x2
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2

∣∣∣ ∣∣∣x− x2
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∣∣∣
|x− 1|

.
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Figure 6. Showing the validity for Case 3 in Example 2.8.

From all cases, we obtain the inquality (2.6) holds for all x, y ∈ X. This means that T
is a rational I2-contraction mapping.

Example 2.9. Let X = [0, 1], d be a usual metric on X and T : X → X be defined by

Tx =


x

6
if x ∈ [0, 1)

1

12
if x = 1.

From the definition of T, we get

T 2x =


x

36
if x ∈ [0, 1)

1

72
if x = 1.

We will show that T is a rational I2-contraction mapping with constants α = 1
2 and

β = 1
3 . Suppose that x, y ∈ X with x ̸= y. We will divide our showing into 3 cases.
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Case 1: If x, y ∈ [0, 1), then

d
(
T 2x, T 2y

)
=

∣∣∣ x
36

− y

36

∣∣∣
=

1

36
|x− y|

=
1

18
|x− y| − 1

36
|x− y|

≤ 1

18
|x− y|+

1
3

∣∣x
6 − y

6

∣∣ ∣∣x− x
6

∣∣
|x− y|

≤ 1

2
|x− y|+

1
3

∣∣x
6 − y

6

∣∣ ∣∣x− x
6

∣∣
|x− y|

= αd (x, y) +
βd(Tx, Ty)d(x, Tx)

d(x, y)
.

The validity of the above showing is demonstrated in Figure 7, which presents two
different viewpoints of the surface. In this figure, the blue surface is a function

[0, 1)
2 ∋ (x, y) 7→

∣∣∣ x
36

− y

36

∣∣∣
and the red surface is a function

[0, 1) ∋ x, y 7→ 1

2
|x− y|+

1
3

∣∣x
6 − y

6

∣∣ ∣∣x− x
6

∣∣
|x− y|

.
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Figure 7. Showing the validity for Case 1 in Example 2.9.
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Case 2: If x = 1 and y ∈ [0, 1) , then

d
(
T 2x, T 2y

)
=

∣∣∣∣ 172 − y

36

∣∣∣∣
=

∣∣∣∣ 136 − y

36
− 1

72

∣∣∣∣
≤

∣∣∣∣ 136 − y

36
− 1

72

∣∣∣∣
=

1

36
|1− y|+ 1

72

≤ 1

3
|1− y|+ 1

72
− 11

36
|1− y|

≤ 1

3
|1− y|+

1
2

∣∣ 1
12 − y

6

∣∣ ∣∣1− 1
12

∣∣
|1− y|

= αd (x, y) +
βd(Tx, Ty)d(x, Tx)

d(x, y)
.

Figure 8 shows the validity of the above showing. In this figure, the solid line is
the graph of a function

[0, 1) ∋ y 7→
∣∣∣∣ 172 − y

36

∣∣∣∣
and the dash line is the graph of a function

[0, 1) ∋ y 7→ 1

3
|1− y|+

1
2

∣∣ 1
12 − y

6

∣∣ ∣∣1− 1
12

∣∣
|1− y|

.
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Figure 8. Showing the validity for Case 2 in Example 2.9.
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Case 3: If x ∈ [0, 1) and y = 1, then

d
(
T 2x, T 2y

)
=

∣∣∣∣ x36 − 1

72

∣∣∣∣
=

∣∣∣∣ x36 − 1

36
+

1

72

∣∣∣∣
≤

∣∣∣∣ x36 − 1

36

∣∣∣∣+ 1

72

=
1

36
|x− 1|+ 1

72

=
1

3
|x− 1|+ 1

72
− 11

36
|x− 1|

≤ 1

3
|x− 1|+

1
2

∣∣x
6 − 1

12

∣∣ ∣∣x− x
6

∣∣
|x− 1|

= αd (x, y) +
βd(Tx, Ty)d(x, Tx)

d(x, y)
.

Figure 9 shows the validity of the above showing. In this figure, the solid line is
the graph of a function

[0, 1) ∋ x 7→
∣∣∣∣ x36 − 1

72

∣∣∣∣
and the dash line is the graph of a function

[0, 1) ∋ x 7→ 1

3
|x− 1|+

1
2

∣∣x
6 − 1

12

∣∣ ∣∣x− x
6

∣∣
|x− 1|

.
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Figure 9. Showing the validity for Case 3 in Example 2.9.

From all cases, we obtain the inquality (2.6) holds for all x, y ∈ X. This means that T is
a rational I2-contraction mapping.

Theorem 2.10. Let (X, d) be a complete metric space and T : X → X be a rational
I2-contraction mapping. Suppose that T is continuous. Then T has a unique fixed point.
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Moreover, for each x0 ∈ X, the Picard iteration {xn}, which is defined by xn = Txn−1

for all n ∈ N, converges to a fixed point of T .

Proof. Let x0 ∈ X. Define the Picard sequence {xn} in X by

xn = Txn−1

for all n ∈ N. If xn = xn−1 for some n ∈ N, then xn−1 is a fixed point of T . Hence, we
may assume that xn ̸= xn−1 for all n ∈ N. From (2.6), define s = d(x0, x1) + d(x1, x2)
and α+ β =: k ∈ [0, 1). Then we obtain

d(x2, x3) = d(T 2x0, T
2x1)

≤ αd(x0, x1) +
βd(Tx0, Tx1)d(x0, Tx0)

d(x0, x1)

= αd(x0, x1) +
βd(x1, x2)d(x0, x1)

d(x0, x1)

= αd(x0, x1) + βd (x1, x2)

≤ ks,

d(x3, x4) = d(T 2x1, T
2x2)

≤ αd(x1, x2) +
βd(Tx1, Tx2)d(x1, Tx1)

d(x1, x2)

= αd(x1, x2) +
βd(x2, x3)d(x1, x2)

d(x1, x2)

= αd(x1, x2) + βd (x2, x3)

≤ αs+ β (ks)

≤ αs+ βs

= ks,

d(x4, x5) = d(T 2x2, T
2x3)

≤ αd(x2, x3) +
βd(Tx2, Tx3)d(x2, Tx2)

d(x2, x3)

= αd(x2, x3) +
βd(x3, x4)d(x2, x3)

d(x2, x3)

= αd(x2, x3) + βd (x3, x4)

≤ α (ks) + β (ks)

= (α+ β) (ks)

= k2s,

d(x5, x6) = d(T 2x3, T
2x4)

≤ αd(x3, x4) +
βd(Tx3, Tx4)(x3, Tx3)

d(x3, x4)

= αd(x3, x4) +
βd(x4, x5)d(x3, x4)

d(x3, x4)
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= αd(x3, x4) + βd (x4, x5)

≤ α
(
k2s
)
+ β (ks)

≤ α (ks) + β (ks)

= (α+ β) (ks)

= k2s
...

By the above relation, we obtain

d(xn, xn+1) =

{
k

n−1
2 s if n is odd,

k
n
2 s if n is even.

Next, we will show that {xn} is a Cauchy sequence. Let m,n ∈ N such that n < m.
We will divide into two cases.

Case 1: If n is odd, we have

d(xn, xm) ≤ d (xn, xn+1) + d (xn+1, xn+2) + d (xn+2, xn+3) + · · ·+ d (xm−1, xm)

≤ k
n−1
2 s+ k

n+1
2 s+ k

n+1
2 s+ k

n+3
2 s+ k

n+3
2 s+ · · ·

≤ 2
(
k

n−1
2 s+ k

n+1
2 s+ k

n+3
2 s+ · · ·

)
= 2

(
k

n−1
2 s

1− k

)
.

Case 2: If n is even, we have

d(xn, xm) ≤ d (xn, xn+1) + d (xn+1, xn+2) + d (xn+2, xn+3) + · · ·+ d (xm−1, xm)

≤ k
n
2 s+ k

n
2 s+ k

n+2
2 s+ k

n+2
2 s+ · · ·

≤ 2
(
k

n
2 s+ k

n+2
2 s+ k

n+4
2 s+ · · ·

)
= 2

(
k

n
2 s

1− k

)
.

For all cases, we get

d(xn, xm) =


2

(
k

n−1
2 s

1− k

)
if n is odd,

2

(
k

n
2 s

1− k

)
if n is even.

(2.7)

This is sufficient to conclude that {xn} is a Cauchy sequence. By the completeness of
X, there exists a point x ∈ X such that xn → z as n → ∞ for some z ∈ X. Since T is
continuous, it follows that

Tz = T
(
lim
n→∞

xn

)
= lim

n→∞
(Txn) = lim

n→n
xn+1 = z.

Thus, z is a fixed point of T . We now proceed to prove the uniqueness of the fixed point.
Suppose, for the sake of contradiction, that w is another fixed point of T with w ̸= z.
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Then we obtain

d (z, w) = d
(
T 2z, T 2w

)
≤ αd(z, w) +

βd(Tz, Tw)d(z, Tz)

d(z, w)

= αd(z, w)

< d(z, w),

which is a contradiction. Therefore, T has a unique fixed point. This completes the proof.

The following example illustrates a situation in which Theorem 2.10 guarantees the
existence and uniqueness of a fixed point. In contrast, the Banach contraction principle
in [1], the Kannan fixed point theorem in [2], the Chatterjea fixed point theorem in [3]
are not applicable.

Example 2.11. Let X = [0, 1.1], d be a usual metric on X and T : X → X be defined
by

Tx =
x5

2

for all x ∈ X. From the definition of T, we get

T 2x =
x25

64

for all x ∈ X. We begin by showing that the Banach contraction principle cannot be
applied in this example. To do so, we claim that T is not a Banach contraction mapping.
Indeed, for x = 0.5188 and y = 1, we obtain

d(Tx, Ty) =

∣∣∣∣∣ (0.5188)52
− 1

2

∣∣∣∣∣ > 0.4812 > k (0.4812) = kd(x, y)

for all k ∈ [0, 1). Hence, T fails to satisfy the Banach contraction condition, and thus,
the Banach contraction principle cannot be applied in this context.

Next, we show that the Kannan fixed point theorem cannot be applied in this example.
To demonstrate this, we claim that T is not a Kannan contraction mapping. Indeed, for
x = 0.48 and y = 1, we obtain

d (Tx, Ty) =

∣∣∣∣∣ (0.48)52
− 1

2

∣∣∣∣∣
> 0.4872

=
1

2
(0.9744)

> k(0.9744)

> k

[∣∣∣∣∣0.48− (0.48)
5

2

∣∣∣∣∣+
∣∣∣∣1− 1

2

∣∣∣∣
]

= k

[∣∣∣∣x− x5

2

∣∣∣∣+ ∣∣∣∣y − y5

2

∣∣∣∣]
= k[d(x, Tx) + d(y, Ty)]
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for all k ∈
[
0, 1

2

)
. It yields that T is not a Kannan contraction mapping. Therefore, the

Kannan fixed point theorem is not useful is this situation.
Moreover, the Chatterjea fixed point theorem cannot be applied in this example. To

demonstrate this, we claim that T is not a Chatterjea contraction mapping. Indeed, for
x = 0.3 and y = 1.1, we obtain

d (Tx, Ty) =

∣∣∣∣∣ (0.3)52
− (1.1)

5

2

∣∣∣∣∣
= 0.80404

=
1

2
(1.60808)

> k(1.60808)

> k

[∣∣∣∣∣0.3− (1.1)
5

2

∣∣∣∣∣+
∣∣∣∣∣1.1− (0.3)

5

2

∣∣∣∣∣
]

= k

[∣∣∣∣x− y5

2

∣∣∣∣+ ∣∣∣∣y − x5

2

∣∣∣∣]
= k[d(x, Ty) + d(y, Tx)]

for all k ∈
[
0, 1

2

)
. This implies that T is not a Chatterjea contraction mapping. Therefore,

the Chatterjea fixed point theorem is not applicable in this situation.
Finally, we will show that Theorem 2.10 guarantees the existence and uniqueness of

a fixed point of T . It is easy to see that T is continuous and that the space X is
complete. Furthermore, we will demonstrate that T is a rational I2-contraction mapping
with constants α = 1

2 and β = 1
3 . Suppose that x, y ∈ X with x ̸= y. We divide the proof

into three cases.

Case 1 : If x, y ∈ [0, 1.1), then

d(T 2x, T 2y) =

∣∣∣∣x25

64
− y25

64

∣∣∣∣
=

1

64

∣∣x25 − y25
∣∣

≤ 1

2
|x− y|+

1
3

∣∣∣x5

2 − y5

2

∣∣∣ ∣∣∣x− x5

2

∣∣∣
|x− y|

= αd (x, y) +
βd(Tx, Ty)d(x, Tx)

d(x, y)
.

The validity of the above showing is demonstrated in Figure 10, which presents
two different viewpoints of the surface. In this figure, the blue surface is a function

[0, 1.1) ∋ x, y 7→
∣∣∣∣x25

64
− y25

64

∣∣∣∣
and the red surface is a function

[0, 1.1) ∋ x, y 7→ 1

2
|x− y|+

1
3

∣∣∣x5

2 − y5

2

∣∣∣ ∣∣∣x− x5

2

∣∣∣
|x− y|

.
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Figure 10. Showing the validity for Case 1 in Example 2.11.

Case 2: If x ∈ [0, 1.1) and y = 1.1, then

d(T 2x, T 2y) =

∣∣∣∣∣x25

64
− (1.1)

25

64

∣∣∣∣∣
=

1

64

∣∣∣x25 − (1.1)
25
∣∣∣

≤ 1

2
|x− 1.1|+

1
3

∣∣∣x5

2 − (1.1)25

2

∣∣∣ ∣∣∣x− x5

2

∣∣∣
|x− 1.1|

= αd (x, y) +
βd(Tx, Ty)d(x, Tx)

d(x, y)
.

The validity of the above showing is demonstrated in Figure 11, which presents
two different viewpoints of the surface. In this figure, the solid line is the graph
of a function

[0, 1.1) ∋ x 7→

∣∣∣∣∣x25

64
− (1.1)

25

64

∣∣∣∣∣
and the dash line is the graph of a function

[0, 1.1) ∋ x 7→ 1

2
|x− 1.1|+

1
3

∣∣∣x5

2 − (1.1)25

2

∣∣∣ ∣∣∣x− x5

2

∣∣∣
|x− 1.1|

.

Case 3: If x = 1.1 and y ∈ [0, 1.1), then

d(T 2x, T 2y) =

∣∣∣∣∣ (1.1)2564
− y25

64

∣∣∣∣∣
=

1

64

∣∣∣(1.1)25 − y25
∣∣∣

≤ 1

2
|1.1− y|+

1
3

∣∣∣ (1.1)52 − y5

2

∣∣∣ ∣∣∣1.1− (1.1)5

2

∣∣∣
|1.1− y|

= αd (x, y) +
βd(Tx, Ty)d(x, Tx)

d(x, y)
.
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The values of the two relevant functions

Figure 11. Showing the validity for Case 2 in Example 2.11.

Figure 12 shows the validity of the above showing. In this figure, the solid line is
the graph of a function

[0, 1.1) ∋ y 7→

∣∣∣∣∣ (1.1)2564
− y25

64

∣∣∣∣∣
and the dash line is the graph of a function

[0, 1.1) ∋ y 7→ 1

2
|1.1− y|+

1
3

∣∣∣ (1.1)52 − y5

2

∣∣∣ ∣∣∣1.1− (1.1)5

2

∣∣∣
|1.1− y|

.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

The value of y

The values of the two relevant functions

Figure 12. Showing the validity for Case 3 in Example 2.11.

From all cases, it follows that the inequality (2.6) holds for all x, y ∈ X, confirming
that T is a rational I2-contraction mapping. Consequently, all the hypotheses of Theorem
2.10 are satisfied, guaranteeing the existence and uniqueness of a fixed point for T as
established in Theorem 2.10.

Theorems 2.12, 2.13, 2.14, 2.15, and 2.16 can be proved using a similar reasoning
approach as in the proof of Theorem 2.10.

Bangmod Int. J. Math. & Comp. Sci., 2025



180 S.I. Hassnain et al.

Theorem 2.12. Let (X, d) be a complete metric space. Suppose that T : X → X is
continuous and there are constants α, β ∈ [0, 1) such that α+ β < 1 and

d(T 2x, T 2y) ≤ αd(x, y) +
βd(x, Tx)d(y, Ty)

d(x, y)
(2.8)

for all x, y ∈ X with x ̸= y. Then T has a fixed point. Moreover, for each x0 ∈ X, the
Picard iteration {xn}, which is defined by xn = Txn−1 for all n ∈ N, converges to a fixed
point of T .

Theorem 2.13. Let (X, d) be a complete metric space. Suppose that T : X → X is
continuous and there are constants α, β ∈ [0, 1) such that α+ β < 1 and

d(T 2x, T 2y) ≤ αd(y, Tx) +
βd(x, Tx)d(y, Ty)

d(x, y)
(2.9)

for all x, y ∈ X with x ̸= y. Then T has a fixed point. Moreover, for each x0 ∈ X, the
Picard iteration {xn}, which is defined by xn = Txn−1 for all n ∈ N, converges to a fixed
point of T .

Theorem 2.14. Let (X, d) be a complete metric space. Suppose that T : X → X is
continuous and there are constants α, β ∈ [0, 1) such that α+ β < 1 and

d(T 2x, T 2y) ≤ αd(x, y)d(y, Ty)

d(Tx, Ty)
+ βd(y, Ty) (2.10)

for all x, y ∈ X with Tx ̸= Ty. Then T has a fixed point. Moreover, for each x0 ∈ X, the
Picard iteration {xn}, which is defined by xn = Txn−1 for all n ∈ N, converges to a fixed
point of T .

Theorem 2.15. Let (X, d) be a complete metric space. Suppose that T : X → X is
continuous and there are constants α, β ∈ [0, 1) such that α+ β < 1 and

d(T 2x, T 2y) ≤ αd(y, Ty) +
βd(y, Tx)d(y, Ty)

d(Tx, Ty)
(2.11)

for all x, y ∈ X with Tx ̸= Ty. Then T has a fixed point. Moreover, for each x0 ∈ X, the
Picard iteration {xn}, which is defined by xn = Txn−1 for all n ∈ N, converges to a fixed
point of T .

Theorem 2.16. Let (X, d) be a complete metric space. Suppose that T : X → X is
continuous and there are constants α, β ∈ [0, 1) such that α+ β < 1 and

d(T 2x, T 2y) ≤ αd (x, y) +
βd(Tx, Ty)d(x, y)

d (x, Tx)
(2.12)

for all x, y ∈ X with x ̸= Tx. Then T has a fixed point. Moreover, for each x0 ∈ X, the
Picard iteration {xn}, which is defined by xn = Txn−1 for all n ∈ N, converges to a fixed
point of T .

3. Applications on implicit functional integral equations

The theory of integral equations is a vast area of mathematics since it has various
applications in physics, mechanics, engineering, bioengineering, control theory, and other
disciplines related to real-world issues over the last three decades. This section aims
to demonstrate the existence of integrable solutions for an implicit functional integral
equation, utilizing the theoretical fixed point results established in the previous section.
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Theorem 3.1. Let X = C [0, 1] be the set of all continuous real-value functions on [0, 1]
and d be a Chebyshev distance on X. Consider the mapping T : X → X, formulating from
the nonlinear implicit functional integral equation, which is defined for each x ∈ X by

(Tx) (t) = αx (t) +

∫ t

0

k (t, τ, x (τ) , (Tx) (τ)) dτ (3.1)

for all t ∈ [0, 1], where α ∈ [0, 1) and k : [0, 1]× [0, 1]×R× R → [0,∞) is a given function.
Suppose that the following conditions hold:

(1) T is continuous;
(2) there is β ∈ [0, 1− α) such that for each x, y ∈ X with x ̸= y and for each

t ∈ [0, 1], we have

|(fx) (t)− (fy) (t)| < (1− α) |x (t)− y (t)|

and

|(f (Tx)) (t)− (f (Ty)) (t)| ≤ βd(Tx, Ty)d(x, Tx)

d(x, y)
,

where fa is defined for each a ∈ X by

(fa) (t) =

∫ t

0

k (t, τ, a (τ) , (Ta) (τ)) dτ.

Then T has a unique fixed point.

Proof. It is well-known that (X, d) is complete. Now, we will show that (2.6) holds. For
each x, y ∈ A with x ̸= y and t ∈ [0, 1], we have∣∣(T 2x) (t)− (T 2y) (t)

∣∣
=

∣∣∣∣α[(Tx) (t)− (Ty) (t)] +

∫ t

0

[
k
(
t, τ, (Tx) (τ) ,

(
T 2x

)
(τ)
)
− k

(
t, τ, (Ty) (τ) ,

(
T 2y

)
(τ)
)]

dτ

∣∣∣∣
≤ α |(Tx) (t)− (Ty) (t)|+

∣∣∣∣∫ t

0

[
k
(
t, τ, (Tx) (τ) ,

(
T 2x

)
(τ)
)
− k

(
t, τ, (Ty) (τ) ,

(
T 2y

)
(τ)
)]

dτ

∣∣∣∣
≤ α |(Tx) (t)− (Ty) (t)|+

∫ t

0

∣∣k (t, τ, (Tx) (τ) , (T 2x
)
(τ)
)
− k

(
t, τ, (Ty) (τ) ,

(
T 2y

)
(τ)
)∣∣ dτ

≤ α |(Tx) (t)− (Ty) (t)|+ βd(Tx, Ty)d(x, Tx)

d(x, y)

≤ α [α |(x (t)− y (t))|+ |(fx) (t)− (fy) (t)|] + βd(Tx, Ty)d(x, Tx)

d(x, y)

≤ α [α |(x (t)− y (t))|+ (1− α) |x (t)− y (t)|] + βd(Tx, Ty)d(x, Tx)

d(x, y)

≤ α |x (t)− y (t)|+ βd(Tx, Ty)d(x, Tx)

d(x, y)

≤ αd(x, y) +
βd(Tx, Ty)d(x, Tx)

d(x, y)

This implies that

d(T 2x, T 2y) ≤ αd(x, y) +
βd(Tx, Ty)d(x, Tx)

d(x, y)
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for all x, y ∈ X. Now, all conditions of Theorem 2.10 are satisfied. Therefore, T has a
unique fixed point.

Remark 3.2. The other theorems established in this paper provide various sufficient
conditions under which the existence and uniqueness of solutions to the given implicit
functional equations can be guaranteed by using a similar line of reasoning as in the proof
of Theorem 3.1.

4. Conclusions and open problems

This paper introduced several novel classes of contraction mappings inspired by con-
vex and rational contraction mappings. For each proposed class, we established fixed
point theorems, ensuring the existence and uniqueness of fixed points in complete metric
spaces. These results extended and generalized classical fixed point theorems, providing
new tools for addressing situations where existing results were not applicable. To sup-
port our theoretical developments, we offered several illustrative examples. In particular,
Example 2.3 served as a compelling case study that demonstrated the effectiveness of
the newly introduced mapping. This example clearly showed that none of the five clas-
sical fixed point theorems, including the Banach contraction principle, the Kannan fixed
point theorem, the Chatterjea fixed point theorem, the Jaggi fixed point theorem, and
the Istrăţescu fixed point theorem, were applicable in the given situation. Nevertheless,
our newly developed fixed point result successfully addressed the problem, clearly illus-
trating the strength and applicability of the proposed framework. As an application, we
employed our fixed point results to investigate the existence and uniqueness of solutions
to a class of nonlinear implicit integral equations, thereby demonstrating the practicality
and potential for further applications of our findings.

Despite these contributions, several questions remain open. For instance:

• Can the assumption of continuity be omitted from the theoretical results estab-
lished in this paper?

• In Example 2.11, it was observed that only the Banach contraction principle, the
Kannan fixed point theorem, and the Chatterjea fixed point theorem were not
applicable. It remains an open question whether one can construct an example
where the Jaggi fixed point theorem and the Istrăţescu fixed point theorem are
also inapplicable.

• Are there other rational-type contractions that can be formulated by combining
classical or well-known fixed point theorems in a manner similar to the approach
taken in this paper?
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