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1. INTRODUCTION

The extension of classical differential equations to arbitrary orders is essential for ex-
amining the intrinsic properties of dynamical systems. This has led to a growing interest
in fractional calculus, which allows researchers to study and solve accurate modeling of
non-local phenomena due to its inherent properties. Over the past few years, fractional
operators have become instrumental in capturing complex behaviors in real-world sys-
tems. Their applications have expanded across various fields, with fractional calculus
proving highly effective in describing phenomena in engineering and sciences. This versa-
tility has solidified its role as a powerful tool in both theoretical and practical applications

[1].

Over the past two decades, several integral transformations utilizing exponential-type
kernels have been developed to address diverse mathematical difficulties. Fractional order
integral equations, as well as ordinary and partial fractional differential equations, are re-
solved utilizing these transforms [2]. Nonetheless, these integral transforms are insufficient
to address non-linear equations due to the complexities arising from non-linear parts. To
address these challenges, several approaches were developed through the hybridization of
integral transforms of exponential order with distinct fractional operators [3-5].

In this article, we will discuss the new methodology on hybridization of Kamal trans-
form with homotopy perturbation method. Further, we have shown that the introduced
method can easily solves the fractional ordered differential equations viz. Kolmogorov
equation, Fokker-Planck equation, and Fornberg-Whitham equation. Also, we discuss the
efficiency of HPKTM by comparing the results with exact solution and residual power
series method.

The generalized non-linear differential equation is,

Dy(e,2)+ Rp(e,2) + Np(e,?) = f(e,?), (1.1)

where D is differential operator, f(e,7) is continuous function, R(¢) and N(p) denotes
the linear and non-linear terms respectively. Various semi-analytical methods like Ado-
mian Decomposition Method [6], Residual Power Series Approach (RPSM) [7, 8], Varia-
tional Iteration Method (VIM) [9], Homotopy Perturbation method (HPM) [10], Homo-
topy Perturbation Transform Method [11, 12] were developed to solve FDEs.

Within last decades various work is carried out to enhance the research in fractional cal-
culus and various methodology were developed [13-15] and numerous hybrid approaches
that combine semi-analytic techniques with integral transforms have been presented in
recent years like VIM [16], HPM [17] and ADM [18] to solve fractional partial differential
equations (FPDEs). In 1999, Ji-Huan He constructed the homotopy perturbation method

(HPM) [10, 23]. The above mentioned techniques were utilized by several engineers and
mathematicians to deal with various fractional ordered equations arising in real world
problems [19-22]. Furthermore, this technique is applied to oscillatory equations with

discontinuities, various nonlinear wave equations, and boundary value problems. Hes
HPM is applicable to solve the different class of non-linear equations. The solution by
this approach is evolved as a sum of series terms, which generally converges fast to its
precise solution [23].

Present work showcases a new hybrid approach that combines the HPM [10] and the
Kamal transform (KT) [32] named Homotopy Perturbation Kamal Transform Method
(HPKTM) to deal with the general FPDEs as it has superior convergence properties.
Additionally, the proposed method has an effective computational algorithm for non-linear
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264 J.P. Chauhan et al.

systems involving Fractional Ordinary Differential Equations (FODEs). With HPKTM,
which is more appropriate, satisfactory findings are obtained than other semi-analytical
and numerical methods. The main advantage of HPKTM over other methods is to solve
complicated problems conveniently.

TABLE 1. Notations used

Symbol  Description

© space variable
Z time variable
© function of space and time

9o = & Partial derivative wrt “e”

p¢ = 55  Partial derivative wrt “Z”

The prime motive of HPKTM is to achieve precise results with less iterations compared
to HPM. We solve the time-fractional Fokker-Planck (F-P) equation [33] using HPKTM,

dp 0%p

with the initial condition
p(e,0) = f(e), e € R.

F-P equation has several applications in various fields like theoretical biology, chemical
physics, circuit theory, solid-state physics, and quantum optics in natural science [33].
Further, HPKTM technique is equally established and demonstrated on non-linear type
fractional-order Fornberg Whitham (F-W) equation [34] given by

h=a
2

Ll
®

7 — Poot T Po = PPose — PPo +3pepes,? >0, with p(e,0) = (1.3)
The application of the F-W equation has notable significance in the study of the non-
linear dispersive wave equation and the qualitative behaviour of wave breakage. It is
exhibited that the F-W equation enables peak-on results as an occurrence of wave breaks
and the numerical simulation to the limit wave heights.

The current work is organized in the following manner: Some well-defined definitions
of terms like the Mittag-Leffler function, Kamal transform, and Caputo derivative and
theorems are found in the section under “Preliminaries.” The section headed “Homotopy
Perturbation Kamal Transform Method (HPKTM)” discusses the Proposed Method, a
hybrid approach that has been suggested. The “Applications” section discusses the solu-
tion of the linear and non-linear FPDEs using the suggested approach, and the “Results
and discussion” section is next. Finally, the summary is covered in the part entitled
“Conclusion”.
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2. PRELIMINARIES

Definition 2.1. [35] Riemann-Liouville (RL) fractional integral of order w of a function
p(e,?) is
w —Ww 1 ‘ w—1
I7lp(e,2)] = oDy “[p(e, 2)] = W) (£ =t)" "ple,t)dt. (2.1)
Definition 2.2. [35] Caputo fractional derivative of order w > 0 of the function (e, )
can be written as
n—w—19"p(p,t)
—1) —fdt, n—1<w<n
DY an w) fO otm 29
loe, )] = { iRy L (2:2)
|]
Definition 2.3. [32] For A = {p(¢) : AM,b1,by > 0,|p(?)| < Me’T, if z € (—1)7 x

[0,00)} with by,bs can be any values and M is finite value, Kamal transform (KT) of a
function p(¢) € A is

K{o()} = / o(2)e=dt, 1> 0,b1 < s < by, (2.3)
0
The Kamal transform of some basic functions is listed in Table 2.

TABLE 2. Kamal transform K{p(Z)} [32] of some basic function ¢(%).

Function Kamal transform
e(?) K{p(2)}

K{1} s

K{z} 52

K{z"} L(n+1)s"ttn>0
K {sin(a?)} %

K {cos(a?)} M%SQ

K{e"} T

K {sinh(a?)} %5z

Theorem 2.4 (Existence Theorem [32]). A piece wise continuous function ¢(Z) is said
to be of exponential order q > 0, if it satisfies |p(¢)] < Me?, then K{p(Z)} exist for all
1

- >4q.
S
Proof. We have
K{o(2)}] = | / Je~tde| < / o(£)le e
0

Ms
1—gs’

/ Mete=5dt < (2.4)
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Theorem 2.5. [32] Kamal transform of integer order derivative of p(e,%) is
1 n—1 1
K{Djp(e,?)} = STLK{@(GJ‘)} - Z WDTSO(G,O)- (2.5)
m=0
Theorem 2.6. [32] Kamal transform of fractional order derivative of ¢(e,%) is
y 1 1
K{Djp(e,?)} = STJK{SD(GJL)} - 89,7_180(9,0) (2.6)

K{DFg(0,0)) = o K{p(0,0)} — oy 9(0,0) = 3 Dipl0,0)  (27)

n—1

KD p(e,0)} = S K{p(o,4)) = Y —tos DY'p(e,0). (28)

m=0
Proof. Let consider the Caputo derivative definition as state in (2.2), we get

Deo(e,2) =D; """ h(e,z), whereh(e,2) =¢" (e,2),n—1<a<n,

(2.9)
now operating the Kamal transform on RL fractional derivative, leads to
—(n—a)
o 1
Kipo(e ) =(3) Koo, (210)
Implementing the result of equation (2.9) into equation (2.10), it yields

—(n—a)
(0% - - 1 n
KDpp(e. ) =K (07" Oh(e0} = (1) KMo} ()
using equation (2.5), we have

n—1

K {h(e,0)} = K {¢"(, 1)} = - K{p(e,0)} = 3~ DF'p(e,0), (212)

m=0

substituting the output of equation (2.12) into equation (2.11), it leads to

—(n—a) n—1
K (D7p (o0} = () l;nmso(e,m S Dr(e )
1 = 1
= K {p(e,0)} - > i DV (e 7), (2.13)

Vw, 0 <w <1 and taking o = nw, we obtain the result (2.6) as desired.

3. HomoTOPY PERTURBATION KAMAL TRANSFORM METHOD (HPKTM)

Let us begin with a generalized form of nonlinear FDEs as

D}¥p(e,Z)+ Rp(e,Z) + Np(e,?) = f(e,?), (3.1)
subject to required initial conditions
dp(e,0 " lp(e,0
QD(G,O) = (bo(e), % = (bl(Q), ey % = ¢n,1(9), (32)
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in which f(e,?) is a continuous function, D, (E %) is partial derivative wrt time, R
denote linear terms and N denote non-linear terms.
First we start by operating Kamal transform on equation (3.1), we have

K{D;*p(e, 1)} = —K{Rp(e,?)} = K{Np(e,7)} + K{f(e,7)}. (3-3)

Using differentiation properties as given in (2.6), it reach to

n—1

1 1
STT,JK{Sﬁ(G‘J)} - Z WD{ u(e,0)

m=0

= —K{Rp(e,?)} —K{N e (e,2)} + K{f(e,2)} (3.4)

n—1

Kfp(o,0)} =" Y — 2 DI'p(e,0) — s"K{Rp(o, )}

m=0
Incorporating the initial conditions given in equation (3.2)

K{p(e,2)} = [sto(e) + s*01(0) + - + 5" dn-1(0)] — " K{Rp(e,7)}
—s"K{Np(e, )} +s"K{f(e,?)}. (3.6)

Taking Inverse Kamal transform (IKT), we have

p(e,7) =G(e,7) — K [s"“K{Ry(e,7)} — s" K{Ny(e,7)}]. (3.7)
in equation (3.7), G(e,¢) donote IKT of first and last term of equation (3.6).
Implementing the HPM [10] to equation (3.7), yields

Zpigp,»(e,[) =G(e,t)—p
=0

K1 [sm"K{R Zpigoi(e, Z)}

i=0
+ s"‘”K{Nipigoi(e,i‘)} 1 . (3.8)
i=0
Eventually He’s Polynomial [23] is used to decompose non-linear parts of equation (3.8)
as
No(o.0)= Y 1" Halo), 59
n=0
where Hy, (0, 91,92y -+ Pn) = % —gpn%N <i}pi§0i>} 07n =0,1,2, ...
' iz =

Using equations (3.8) and (3.9), we get

> peile,t) =G(e,t) —p lKl sS"K{RY p'pi(e, )} + SnwK{ZpiHi(gO)}]] :
1=0 =0 =0
(3.10)
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Comparing the terms of p on both sides of equation (3.10)

pO : 300(935) = G(e7{)ﬂ (311)
phipi(e, ) = =K [s"K{Rpo(e,7)} + s"“ K{Ho(¢)}], (3.12)
P’ ipa(e, ) = —K ' [s"K{Rpi(e,7)} + s" K{H1()}], (3.13)
P (e, ) = —K 7 " K{Rpy_1(e,7)} + 8" K{H,—1(0)}]- (3.14)

Ultimately, the result of application (3.1) is obtained as

ple,t) = limou(e,2) = po(e,2) +p'pi(e. 4) +ppale ) + - (3.15)
=po(e,?) +pi(e, ) +pa(e,Z) +---. (3.16)

3.1. CONVERGENCE THEOREM OF THE APPROXIMATE SOLUTION BY HPKTM
TECHNIQUE

Theorem 3.1. [36] Assume that the Banach space of all continuous real-valued func-
tions considered on the rectangular area [a,b] x [0,T] is defined as B = C ([a, b] x [0,T]).

o0

Then, p(e,Z) = > pr(e,?) is convergent as equation (3.16), if oo € B is bounded and
k=0

lppr1ll < ollekll, Vor € B, for 0 <o <1.

Proof. Assuming {J,;} be the partial sum of the sequence given equation (3.16) as

JO = ¢0(67{)7
J= @0(97{) + @1(675)7

Jo=wo(e, )+ pi(e, )+ pa(e, )+ +q(e,?). (3.17)

We will illustrate that {J, o—o generates a Cauchy sequence in Banach space B in order
to obtain the intended outcome. Additionally, let’s take

”Jq-i-l _JqH = ||<Pq+1(9>f)||
<o leq(e, )

< 0% @g-1(e, )]
< 0% pg—2(e, )]

< o™ [lpo(e, )]l (3.18)
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Considering each ¢,n € N, for ¢ > n,, we obtain

||Jq - Jn” = ||(Jq - Jqfl) + (Jqfl - Jq*2) + (Jq72 - Jq*3) +ooet (Jn+1 - Jn)”
< g = Jg-1ll + 13g-1 = Jg—2ll + g2 = Jg—sll + - - - + [Jn41 = Inl
<o llo(e, O)ll + 07 lpo(e, )| + 09 lpo(e, )] + - + 0" o (e, )
< (07407 0T 4 0" oo, 2|
(1—oi ")
(1-o0)
< Bllpole, )| (3.19)

IN

" lgo(e, 2)l|

in which g = %a”“. Given the limited nature of pg(e,%), |po(e,?)| < oo.

Additionally, if ¢ — oo is taken into consideration for any finite value of n, then 5 — 0,
which indicates

Jim |3, = 3, = 0. (3.20)

Therefore, the Cauchy sequence in B is {Jq}:io. Thus, the equation (3.1) likewise as its
series solution in the form of (3.16) become convergent.

n

Theorem 3.2. If the estimated solution of equation (3.1) is > ypr(e,?), then the maz-

k=0
imum absolute error can be approxzimated as
n ontl
90(97{) - Z <)Okl(e){) < 1—o HQO()(G, Z)” . (321)
k=0
Proof. From equation (3.19) as written in Theorem 3.1 is
1—ogd™
0y = Jull < Bllgo(, ), where s = =0 Dgnen (3.22)

(I-0)
Here, {Jq};ozo — ¢(e,7) as ¢ — oo along with equation (3.17), we could obtain J, =

E (pk(ev {)7
k=0

ple,t) =Y wul(e,?)| < Bllwole, ). (3.23)
k=0

Given that 0 <o < 1, (1 — 07 ™) < 1 hence

O.n+1

gp(e,{) - Z (Pk:(eyf) <
k=0

llpo(e, 2]l (3.24)

1—0

This proves the theorem.

Theorem 3.3. The generalized form of the FDE as equation (3.1) could be solved ana-

lytically if the series solution Y. @, presented as equation (3.16) is converges.
n=0
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270 J.P. Chauhan et al.

Proof. We determine the sequence J, = wg + p1 + p2+ -+ ©p_1.
by using iterative scheme,

Jo = o, (3.25)
J1 =0 + 1, (3.26)

Jn=¢(0,0) = K7 [s*K {p1 + 2+ -+ on1}] + K [s"K {f(e,7)}].

(3.27)
Assume that the solution of the series (3.16) converges, and ¢ = Y ¢, then we have
n=0
= lim J,
n—oo

— p(0,0) — K {sz {Rnnj;o on + lim Hn(w)}} + KUK {f(e, )],
(3.28)

1 [o'e]

where H,,(¢0, 01,92, -+, ¢n) = EN <Z gai),n =0,1,2,....
: i=0

Implementing the HPM, it leads to

o= p'en
n=0

o) ()]

+ K [s*K {f(e,?)}] (3.29)
for homotopy parameter p =1,

p=> on

n=0

— p(,0)— K [s“K {R (2 ‘P"> N <§;%> H

+K s K {f(e,0)}], (3-30)
p(e,7) =p(e,0) = K~ [s*K {R(¢(e, 7)) + N(p(e,7))}]
+ K YK {f(e,2)}], (3.31)
applying KT on (3.25),
K {90(97{)} — 890(970)

Sw

= K{(Re(e,7)} + K{(Np(e,2)} + K{(f(e,?)},
(3.32)

or,

KA{(D*¢p(e,?)} = K{Rp(e,7)} + K{Nop(e,7)} + K{f(e,?)}, (3.33)
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and by using IKT,
D¥¢(e,?) = Rp(e,2) + No(e,2) + f(e, 7). (3.34)

The outcome demonstrates that the employed method’s solution as (3.10) is convergent
and unconditionally stable [23].

4. APPLICATION OF HPKTM AND NUMERICAL DISCUSSIONS

Example 4.1. In class of Fokker-Planck equation, the time-fractional backward Kol-
mogorov equation [33] defined as:

88%(‘0: —A(e,i‘)g—z+B(e i‘)% ; (4.1)
subject to,

o(0,0) = f(e), o € R.
Consider A(e,Z) = (e +1) and B(e,7) = e2¢’, (4.1) becomes

p7 — (e + Dpo — 0%’ pos =0, (4.2)
subject to

p(e,0)=o+1. (4.3)

Applying KT on (4.2),
K{p?} — K{(e + Dpo} — K{e’e’pos} = K{0}. (4.4)

Using differentiation properties (2.3),

L E{p(e,0)} — rele,0)] ~ K{(o + 1o} ~ K{o% 00} =0, (45)

Substituting equation (4.3),

K{p(e,0)} = s(e +1) + s“K{(e + 1)po} + s K {2 pos}, (4.6)
taking IKT on both sides gives,

ple,2) =K '[s(e+1)]+ K ' [s*K{(e+1)pe}+s*K{e’ pso}], (4.7)

oo, 2) = (o +1) + K [*K{(e + D)po} + s*K {0 pas}]. (48)

By applying the HPM to (3.8) gives

Zpgp,e{ (e +1)+pK~! [ K{e+1 (Zpgpzef>H
+sYK {GQef;; (;piui(e,{)> }] . (4.9)
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Comparing the power of \p” in equation (4.9),
P’ po(e, ) =e +1,
_ dpo 9o
1. _ 1| w 2 7
p (e, d) =K [s K{(e+1)(‘9e+9686~2
tw
= 1 _—

_ i1 %1
2. 1| w 2.t
p° e, ) =K [5 K{(eJrl) 9o + o 502

{2“’

=+ Drgs iy

2
P p3(e, ) = K |:SWK{(G+ 1)% Jreze{aw}}

Oe 0e?
tSw
= Ve
e+ Ve Ty
(4.10)
Thus, using (3.16) the exact solution of (4.2) obtained as
w t2w {34/.1
7) = 1)1
ple?)=(e+1) { Teorn e TTEorD
= (e +1)E,(¢%). (4.11)
where E,,(¢*) is Mittag-Leffler function [35].
Example 4.2. The time-fractional Fokker-Planck equation[33] defined as
Mo 0 o?
= |- — 4.1
oL = |- geAle ot Bl 0y (112)

subject to initial condition,
p(e,0) = f(e), e € R.

Considering A(e, ) = e’ cosh(e) coth(e)+e’ sinh(e)—coth(e) and B(e, ) = e’ cosh(e),
in (4.12) yields

%‘p + a% [(e” cosh(e) coth(e) + e sinh(e) — coth(e)) ¢]
- % [(e” cosh(e)) o] =0, (4.13)
subject to,
o(e,0) = sinh(e). (4.14)
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Operating KT, (4.13) is written as,

. { a(;; } LK { aae [(¢” cosh(e) coth(e) + ¢’ sinh(s) — coth(e)) <p]}

62
K {892 [(e” cosh(e)) (p]} =K{0}. (4.15)
Using differentiation properties (2.3),
1 1
LWK‘&P(GJ)} - Sw_lga(e,o)}

# 1 {2 [(e cosh(o) (o) + 4 sinh(o)  corhe)) ] |

82
-K {892 [(e” cosh(e)) go]} = K {0}. (4.16)
Substituting equation (4.14),

K {p(e,?)} = s(sinh(e)) + s“K {8 [(e” cosh(e) coth(e) + e’ sinh(e)

oe
— coth(e)) ¢]} — s“K {6892 [(¢” cosh(e)) ¢] } . (4.17)
Taking IKT,

¢(e,?) =sinh(e) + K ! {s‘*’K {aae [(¢” cosh(e) coth(e) + ¢’ sinh(e)

— cotn(on el - 5 [ { D[ comien o]}y

By applying the HPM,

Zpigoi(e, 7) = sinh(e) + pK~1! |:SWK {(‘9(?9 ((e{ cosh(e) coth(e) + el sinh(e)

i=0
— coth(e Zpgolei‘>}1
82
—pK~! [SwK{w<6 cosh(e Zpgple{>}]. (4.19)

By comparing the power of \p” term’s of equation (4.19),
p° : @o(e,7) =sinh(e),
plipi(e, ) =K} {S“K {889 [(e” cosh(e) coth(e) + e’ sinh(e) — coth(e)) o]

82
- 5oz [(e” cosh(e)) o] H
. 7
= Slnh(e)m,
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p?ipo(e, ) =K' |:SWK {889 [(e” cosh(e) coth(e) + ¢’ sinh(e) — coth(e)) ¢1]

- s (et conhie) ]

. 72w
= smh(e)m7

- (e coshe)) ] |

. 23w
= smh(e)m,

P ps(e, ) =Kt [s“’K {869 [(¢” cosh(e) coth(e) + € sinh(e) — coth(e)) 2]

(4.20)
Proceeding in the same way, the exact solution of (4.13), using (3.16) is given by
v {20.} i¢3w
7) = sinh 1 e
plend) =simh(e) |14 5o * Foo ) T Tao s 1)
= sinh(e)E, (¢¥).
where E,, (%) is Mittag-Leffler function [

(4.21)
|-
Example 4.3. Consider non-linear time-fractional Fornberg-Whitham equation |
follows:

| as
©7 — Yoot T Po = PPooe — PPo T 3PoPoo (4.22)
with initial condition
p(e,0) = %eg (4.23)
when w = 1, the exact solution of (4.22) given by Zhang et al. [7],
(e, ) = ge(%‘%)- (4.24)
Operating KT on both sides of equation (4.22), we get

K{¢7} — K{poor} + K{ps} = K{ppsoo} — K{vpe} +3K{popss}. (4.25)
Using differentiation properties (2.3), we have

LK {p(e,0)) -

o1 ¢(2,0)| — K{psor} + K{ps}

= K{ppoeo} — K{ppe} +3K{pepos}-
Applying the initial conditions (4.23),

(4.26)

4s o
K{p(e,?)} = 367 + 58K {poor — o + PPose — PP +30cpes}t, (4.27)
p(e,?) =

=3
2

ol s
(o)

+ Kt [SwK {Weef — Yo T PPose — PP + 34,09(,099}] . (428)
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Executing the HPM,

> peile,t) = ge% +pKt [SWK {R (Zpigoi> + ZpiHi(ap)H, (4.29)
=0 =0 1=0

in which non-linear part of equation (4.21) has been decomposed using He’s Polynomial
H;(p) as follows

Ho(¢) = popoeee — PoPoe + 3006 Poos;
Hi(#) = p1p0e 06 + PoP1000 — L1006 — P0P16 T 30100006 + 3006 P1e0,
Hs(p) = p2p000e + 20101006 + PoP2000 — P2P06 — 201016 — PoP20

+ 3026 P0ee T 06p160100 + 3P0eP200;

(4.30)

Comparing the power of p in (4.30),

po tpo(e,?) = ge%,
p'ipi(e,?) = K ' [s*K {Rpo(e, )} + s“ K {Ho(¢)}]
2 o /i
~ 3
p* (e, t) = K~ [s“K {Rpi(e, )} + s“K {Hi(¢)}]
1 o /nd 72w

6° [F(w+1) T(2w+1))’
P’ pa(e, ) = K1 [s*K {Rpz(e, )} + s K {Hz(¢)}]
1 o[ ¢ 1% 2 3
T [r(w D CTw D) T 3TGe 1)] ’
p':pale,?) = K~ [s“K {Rps(e,2)} + s° K {Hs(p)}]
L o 2% 3 1 o ]

v

96 {F(w—i—l) ot 1)  ‘TEw+l) 30w 1)

(4.31)

Similarly, proceeding in the same way, we get approximate solution of (4.22) as follows,

(o,7) —le% 4 — 8 _° + 2 i
et =y 32T(w+1) 3202w +1)
7 {3&) 1 _[41»

(4.32)

BTBo+ D)  3TEw+D

Bangmod Int. J. Math. & Comp. Sci., 2025



276 J.P. Chauhan et al.

[— Exact —@=1 — =09 —w=08 — @=07|

T T T T T T T T T 1
0 02 04 06 0s 1
T

FiGURE 1. Comparison of Fornberg-Whitham equation at some specific
values of w, e =1 and its Exact result.
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(B)w=1 (F) Exact solution

FIGURE 1. The behavior of the outcome of F-W equation by HPKTM
technique with certain order w and its Exact Solution.
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TABLE 3. The result of F-W equation at certain fixed value of © and ¢
using Maple tool, suggested HPKTM technique, and RPSM [7] method.

o 7 Exact HPKTM RPSM |Exact-HPKTM]| |Exact-RPSM]|
0.1 0.00840452864 0.008406038080 0.008402202315  1.50944E-06  2.32632E-06
0.2 0.00786249525 0.007865130666 0.007820475300  2.63541E-06  4.20200E-05

-100.3 0.00735541923 0.007361937038 0.007238748282  6.51781E-06  1.16671E-04
0.4 0.00688104606 0.006898983932 0.006657021266  1.79379E-05  2.24025E-04
0.5 0.00643726666 0.006480594855 0.006075294249  4.33282E-05  3.61972E-04
0.1 0.10238811940 0.102406508144 0.102359778960  1.83887E-05  2.83404E-05
0.2 0.09578480094 0.095816906847 0.095272893116  3.21059E-05  5.11908E-04

-5 0.3 0.08960735032 0.089686753511 0.088186007271  7.94032E-05  1.42134E-03
0.4 0.08382830210 0.084046830091 0.081099121369  2.18528E-04  2.72918E-03
0.5 0.07842196221 0.078949807683 0.074012235501  5.27845E-04  4.40973E-03
0.1 2.05652035300 2.056889700499 2.055951119752  3.69347E-04  5.69233E-04
0.2 1.92388915600 1.924534020346 1.913607212453  6.44864E-04  1.02819E-02

1 0.3 1.79981174400 1.801406599161 1.771263305154  1.59486E-03  2.85484E-02
0.4 1.68373645700 1.688125709069 1.628919396701  4.38925E-03  5.48171E-02
0.5 1.57514721700 1.585749277301 1.486575488908  1.06021E-02  8.85717E-02
0.115.19574425000 15.198473386302 15.191538160505  2.72914E-03  4.20609E-03
0.214.21572491000 14.220489840638 14.139751044134  4.76493E-03  7.59739E-02

5 0.3 13.29890994000 13.310694418187 13.087963927762 1.17845E-02  2.10946E-01
0.4 12.44122314000 12.473655566364 12.036176802863  3.24324E-02  4.05046E-01
0.511.63885116000 11.717190368813 10.984389682836  7.83392E-02  6.54461E-01

5. RESuLTS AND DISCUSSION

This paper presents a semi-analytical solution for the time-fractional Fokker-Planck (F-P)
and Fokker-Whitham (F-W) equations utilizing the HPKTM method. Figure-1 illustrates
the behavior of various fractional-order w. The dynamic solution of the F-W equation
for various fractional orders, specifically w = 0.2, 0.4, 0.6, 0.8, as well as w = 1 and
the exact solution, is graphically presented in Figures 2a to 2f. The solution of the F-
W equation, derived using HPKTM and the Residual Power Series Method alongside
an exact solution, is presented in Table 3. The graph illustrates the hereditary and
intelligibility of the system’s dynamic behavior. The method can also address the F-W
equation type with various initial condition problems. The result obtained in class of F-P
equation as backward Kolmogorov equation is expressed in terms of the Mittag-Leffler
function, indicating the convergence of the method.

6. CONCLUSION

The new semi-analytical method, HPKTM, is proposed in the present paper. We have
applied it to the F-P equation and F-W equation in arbitrary order to analyze the concise
behaviour of the system. We have showcased that the HPKTM can reduce the computa-
tional effort compared to the classic method while at the same time maintaining the high
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accuracy of the numerical results. We conclude that HPKTM represents a significant re-
finement of the existing method and has the potential for numerous possible applications.
The proposed method demonstrates reliability and reduced the variability in computa-
tion, making it applicable across various domains in science and technology for addressing
functional equations. The graphical representation of these problem types indicates that
the HPKTM is an effective tool for solving fractional partial differential equations and,
in particular circumstances, yields exact solutions as well.
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