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A HYBRID CONJUGATE GRADIENT METHOD FOR UNCONSTRAINED 25

1. Introduction

Fletcher and Reeves in 1964 developed non-linear conjugate gradient method for min-
imization of an unconstrained problem of the form

min f(x), x ∈ Rn, (1.1)

where f : Rn −→ R is a function that is smooth and its gradient is designated by
g(x) = ∇f(x). Conjugate Gradient (CG) schemes constitute an exceptional choice for
solving scientific and engineering problems in the form of (1.1), because of their nice
theoretical properties and modest memory requirements [1, 2]. The method can be model
into many real life problems arising from; portfolio choice [3, 4], m-tensor system [5, 6],
image restoration [7, 8], signal recovery [9, 10] and three degrees of freedom (3DOF)
robotic motion [11–13]. Starting with x0 ∈ Rn as an initial guess for the minimizer, the
algorithm produces sequence of points {xk} using the following iterative procedure

xk+1 = xk + αkdk, k = 0, 1, 2, . . . , (1.2)

where the step-size αk > 0 is obtainable by suitable technique through the search direction
dk. For example, any value of the step-size αk that satisfies certain conditions is preferred
[14]. The weak Wolfe line technique consisting the following inequalities

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk, (1.3)

g(xk + αkdk)
T dk ≥ σgTk dk. (1.4)

On the other hand, the strong Wolfe condition is given by (1.3) and

|g(xk + αkdk)
T dk| ≤ −σgTk dk, (1.5)

where 0 < δ < σ < 1. The search direction dk is computed from

d0 = −g0, dk+1 = −gk+1 + βkdk, ∀k ≥ 1, (1.6)

with βk, called update parameter that determines the choice of a method.
Various selections for the scalar parameter βk would produce different CG methods

with quite different theoretical and numerical features [15]. Therefore, some earlier pro-
posed CG formulas include; Fletcher and Revees (FR)[16], Dai and Yuan (DY) [17],
Fletcher (Conjugate Descent (CD))[18], Hestenes and Stiefel (HS) [19], Polak, Ribière
and Polyak (PRP) [20, 21], and Liu and Storey (LS)[22]. Recent survey of CG features
shows that DY scheme possesses strong convergence property but numerically uncertain
due to jamming [23]. To address this drawback, researchers have developed interest in
combining this method with other CG methods that are numerically stable. For example,
HS method, despite its promising performance, the method is also affected by conver-
gence problem [24]. Let ∥·∥ denotes Euclidean norm and define sk = xk+1 − xk and
yk = gk+1 − gk. Thus, the strength of HS and DY with the following βk:

βHS
k =

gTk+1yk

dTk yk
, (1.7)

βDY
k =

∥gk+1∥2

dTk yk
, (1.8)

were examined to avoid their weaknesses [25, 26]. Recently, the idea of combining
different CG methods to improve their numerical and theoretical structures attracted

 

 

Publications

c⃝ 2023 The authors. Published by

TaCS-CoE, KMUTT

https://doi.org/10.58715/bangmodjmcs.2023.9.3

 

 

Bangmod J-MCS 2023

https://doi.org/10.58715/bangmodjmcs.2023.9.3


26 N. Salihu, H.A. Babando, I. Arzuka, S. Salihu

more attention [27], especially, the βk parameters that are derived based on the following
classical conjugacy condition

dTk+1yk = 0. (1.9)

The condition (1.9) has been generalized by Perry [28] and Dai and Liao [29]. The Perry
and Dai-Liao conjugacy conditions are respectively given as

dTk+1yk = −gTk+1sk (1.10)

dTk+1yk = −tgTk+1sk, t ≥ 0. (1.11)

It is important to note that, when t = 0, equation(1.11) reduces to (1.9), and if t = 1,
then Perry’s condition is obtained.

As mentioned above, different CG parameters have been proposed in such a way that
one of the conditions (1.9)-(1.11) is satisfied. For example, based on the condition (1.11),
Dai-Liao [29] proposed another CG method defined by

βDL
k =

gTk+1yk

dTk yk
− t

gTk+1sk

dTk yk
.

where yk = gk+1 − gk, sk = xk+1 − xk and t > 0 is called Dai-Liao parameter. In order
to establish the global convergence for general function, Dai and Liao [29] adjusted the
above formula as follows:

βDL∗
k = max{

gTk+1yk

dTk yk
, 0} − t

gTk+1sk

dTk yk
, (1.12)

for some parameter t.
It can be observed that if t = 0, then βDL

k scale down to HS [19] CG formula defined
in (1.7). Similar to some classical CG methods, the DL method is globally convergent for
uniformly convex objective functions, but, its convergence for general functions depends
on the non-negative parameter t [30]. In addition, the DL method may fail to generate

sufficient descent direction [31], that is, dTk gk ≤ −c∥gk∥2, c > 0. Consequently, by con-
sidering the self-scaling memoryless BFGS scheme, Hager and Zhang [32] extended the
above idea to construct another new formula as follows:

βN
k =

gTk+1yk

dTk yk
− 2

∥yk∥2

(dTk yk)
2
gTk+1sk, (1.13)

and showed that (1.13) satisfies the descent condition gTk+1d
T
k+1 ≤ 7

8∥gk+1∥2. To show that
the method is globally convergence for general functions, Hager and Zhang [32] presented
the following restricted version of (1.13):

βN+
k = max{βN

k ,
−1

∥dk∥min{η, ∥gk∥}
}. (1.14)

Results from numerical computations has shown that the method is efficient and promis-
ing. Furthermore, the DL-like methods proposed in [33] and [34] happened to be globally
convergent and numerically stable, but like the method in [29], they also fail to fulfil the
sufficient descent condition. To overcome the defect with DL CG versions; using singular
value study, Babaie-Kafaki and Ghanbari [35] and Andrei [36] proposed an adaptive opti-
mal choices for t, which increased the numerical strength of the DL methods. Numerical
experiments show that these algorithms are robust and more efficient than Hager and
Zhang [32] CG method. Despite the fact that different choices of the parameter t have
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been suggested in [24, 31, 35, 37–40], and for nice review on recent advances on Dai-Liao
methods by Saman [41], the optimal choice of t in DL-type methods still requires more
attention, especially with hybrid CG methods.
Motivated by the above discussions and the idea in [42], we introduce a hybrid CG method
for unconstrained optimization problem with the CG parameter taken as the convex com-
bination of the HS and DY CG parameters. The convex combination parameter is derived
based on the Dai-Liao conjugacy condition (1.11). Thus, the proposed hybrid method
takes HS method [19] and DY method [17] as special cases. Some of the major contribu-
tions of this paper can be highlighted as follows:

(1) A new hybrid conjugate gradient parameter is proposed based on the concept of
extended conjugacy condition.

(2) The search direction of the new method is sufficient descent using strong Wolfe
line search procedure.

(3) The efficiency of proposed scheme is illustrated on variety of large scale benchmark
unconstrained optimization problems.

(4) The method is shown to converge globally based on some standard rules.
(5) Finally, the new hybrid algorithm is applied to solve three degrees of freedom

robotic model.

This article is organized as follows: Preliminaries and description of the hybrid method
are given in Section 2. In Section 3, the theoretical analysis of the method are presented.
Investigation of the practical implementation of the method are reported in Section 4.
Finally, in Section 5, conclusions are made.

2. Hybrid Method and its algorithm

Here, in order to strengthen the behaviour of CG updating parameters proposed by
Hestenes and Stiefel [19] with Dai and Yuan [17] CG methods, we proposed their convex
combination using relations (1.7) and (1.8) as

βk = (1− θk)β
HS
k + θkβ

DY
k

= βHS
k + θk(β

DY
k − βHS

k )

=
gTk+1yk

dTk yk
+ θk

(
gTk+1gk+1

dTk yk
−

gTk+1yk

dTk yk

)
(2.1)

=
gTk+1yk

dTk yk
+ θk

gTk+1gk

dTk yk
.

Employing the choice of parameter t in [42], implies that, (1.11) becomes

dTk+1yk = −
(
sTk yk + ∥yk∥∥sk∥

∥sk∥2

)
gTk+1sk, (2.2)

where t =
sTk yk

∥sk∥2
+

∥yk∥
∥sk∥

.

Multiplying (1.6) by yTk and using (2.1) and (2.2), we have
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dTk+1yk = −gTk+1yk + βkd
T
k yk

= gTk+1yk +

(
gTk+1yk

dTk yk
+ θk

gTk+1gk

dTk yk

)
dTk yk

= −gTk+1yk + (gTk+1yk + θkg
T
k+1gk)

= θkg
T
k+1gk. (2.3)

Equating (2.2) with (2.3) gives

θkg
T
k+1gk = −

(
sTk yk + ∥yk∥∥sk∥

∥sk∥2

)
gTk+1sk

By rearranging, we have

θk = −
(
sTk yk + ∥yk∥∥sk∥

∥sk∥2

)
gTk+1sk

gTk+1gk
. (2.4)

Based on these relations, we described the implementation of the new hybrid method as
follows:

Algorithm 1: ECCHD

Step 1: Select x0 ∈ Rn and parameter 0 < δ < σ ≤ 0.3. Consider d0 = −g0 and set α0 = 1.
Step 2: Check for convergence: If ∥gk∥ ≤ 10−6, then stop. Otherwise
Step 3: Compute αk > 0 such that (1.3) and (1.5) are satisfied.
Step 4: Compute θk using (2.4).
Step 5: Compute βk:

βk =


βHS
k , if θk ≤ 0,

(1− θk)β
HS
k + θkβ

DY
k , if 0 < θk < 1,

βDY
k , if θk ≥ 1.

Step 6: Compute dk+1 = −gk+1 + βkdk. If restart criterion of Powell

|gTk+1gk| > a∥gk+1∥2, where a = 0.2 (2.5)

is satisfied, then set dk+1 = −gk+1.
Step 7: Set k = k + 1 and go to Step 2.

Remark 2.1. The convex combination parameter θk is more general than that of Andrei

[43], that is, θ̂k = − sTk gk+1

gTk gk+1
. In addition, We select the parameter θk in such away that,

if θk ≤ 0, we set βk = βHS
k and if θk ≥ 1, we set βk = βDY

k . Otherwise, if 0 < θk < 1,
then βk includes both βHS

k and βDY
k .

3. Convergence Analysis

Now we will show that dk, the search direction obtained by ECCHD Algorithm is
sufficient descent.
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Lemma 3.1. Let σ ∈ (0, 0.3] and suppose the sequences {gk} and {dk} are generated by
ECCHD Algorithm. Then the search direction satisfies:

dTk+1gk+1 ≤ −c∥gk+1∥2, ∀k ≥ 0, (3.1)

where c =
(1− 3.2σ)

(1− σ)
.

Proof. Suppose that restart criterion of Powell [44] condition (2.5) holds in ECCHD Al-
gorithm, that is, dk+1 = −gk+1, then (3.1) holds. Let assume that (3.1) does not hold.
Then, we have the following inequalities:

|gTk+1gk| ≤ 0.2∥gk+1∥2. (3.2)

We show the proof by mathematical induction. Initially, it follows easily that gT0 d0 =

−∥g0∥2, which implies that (3.1) is satisfied. Next, suppose the result in (3.1) holds for
k, that is,

dTk gk ≤ −c∥gk∥2. (3.3)

We now show for k + 1. From the strong Wolfe Condition

|gTk+1dk| ≤ −σdTk gk. (3.4)

Therefore, using (3.3), we have

dTk yk = dTk gk+1 − dTk gk ≥ −(1− σ)dTk gk ≥ 0. (3.5)

Multiplying (1.6) with gTk+1 and using (2.1), we have

gTk+1dk+1 = −∥gk+1∥2 + ((1− θk)β
HS
k + θkβ

DY
k )gTk+1dk. (3.6)

So, when θk ≤ 0, we set θk = 0, which means βk = βHS
k , it follows from (1.7) and (3.6)

that

dTk+1gk+1 = −∥gk+1∥2 + βHS
k dTk gk+1,

≤ −∥gk+1∥2 +
|gTk+1yk|
dTk yk

|dTk gk+1|. (3.7)

Since yk = gk+1 − gk, we now use (3.2), to get

|gTk+1yk| ≤ ∥gk+1∥2 + |gTk+1gk|,

≤ ∥gk+1∥2 + 0.2∥gk+1∥2,

= 1.2∥gk+1∥2.
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Now, from the above inequalities and (3.4) , (3.5) and (3.7), we get

gTk+1dk+1 ≤ −∥gk+1∥2 +
1.2∥gk+1∥2

dTk yk
|dTk gk+1|

≤ −∥gk+1∥2 −
1.2σ∥gk+1∥2

dTk yk
dTk gk

≤ −∥gk+1∥2 +
1.2σ∥gk+1∥2

(1− σ)

≤ − (1− 2.2σ)

1− σ
∥gk+1∥2

gTk+1dk+1 ≤ −c1∥gk+1∥2. (3.8)

Since σ ∈ (0, 0.3]. Also, when θk ≥ 1, we set θk = 1, which implies that βk = βDY
k , and

from (1.8) , (3.4),(3.5),(3.6), we obtain

gTk+1dk+1 ≤ −∥gk+1∥2 +
∥gk+1∥2

dTk yk
|dTk gk+1|

≤ − (1− 2σ)

1− σ
∥gk+1∥2

≤ − (1− 2σ)

1− σ
∥gk+1∥2

gTk+1dk+1 ≤ −c2∥gk+1∥2. (3.9)

Finally, if θk ∈ (0, 1), then the parameter θk is computed by (2.4). Indeed, it follows from

(1.7), (1.8), (3.4), (3.5), (3.6) and |gTk+1yk| ≤ 1.2∥gk+1∥2, that

dTk+1gk+1 ≤ −∥gk+1∥2 + |βHS
k ||dTk gk+1|+ |βDY

k ||dTk gk+1|

≤ −∥gk+1∥2 + σ|βHS
k ||dTk gk|+ σ|βDY

k ||dTk gk|

≤ −∥gk+1∥2 + σ
|gTk+1yk|
|dTk yk|

|dTk gk|+ σ
∥gk+1∥2∣∣dTk yk∣∣ |dTk gk|

≤ −∥gk+1∥2 +
1.2σ∥gk+1∥2∣∣dTk yk∣∣ |dTk gk|+

σ∥gk+1∥2∣∣dTk yk∣∣ |dTk gk|

≤ −∥gk+1∥2 +
1.2σ∥gk+1∥2

(1− σ)
+

σ∥gk+1∥2

(1− σ)

≤ −∥gk+1∥2 +
2.2σ

(1− σ)
∥gk+1∥2

≤ −
(
1− 2.2σ

1− σ

)
∥gk+1∥2

≤ −
(
1− 3.2σ

1− σ

)
∥gk+1∥2

dTk+1gk+1 ≤ −c∥gk+1∥2, (3.10)
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where the fifth inequality follows from (3.5) and since σ ∈ (0, 0.3], this inequality shows
that (3.1) holds for k + 1.

The following assumptions are necessary for the convergence analysis.
Assumption 3.1: The level set S = {x ∈ R : f(x) ≤ f(x0)} is bounded and there exists
a constant B > 0 such that

∥x∥ ≤ B, ∀x ∈ S.

Assumption 3.2: In a neighborhood N of S, the objective function f is continuously
differentiable, its gradient is Lipschitz continuous and there exists a constant L > 0 such
that

∥g(x)− g(y)∥ ≤ L∥x− y∥, (3.11)

for all x, y ∈ N . Under these assumptions, there exists a constant Γ > 0 such that.

∥g(x)∥ ≤ Γ, (3.12)

for all x ∈ S.

Lemma 3.2. [45] Suppose that Assumptions 3.1 and 3.2 hold. Consider the CG method
(1.2), where the search direction dk is sufficient descent and αk satisfies strong Wolfe
condition, then

∞∑
k=0

(gTk dk)
2

∥dk∥2
< +∞. (3.13)

Lemma 3.3. Suppose that the sequences {xk} and {dk} are generated by ECCHD Al-
gorithm, and Assumptions 3.1 and 3.2 hold. If there exists a constant ϵ > 0, such that

∥gk∥ ≥ ϵ, ∀k ≥ 0, (3.14)

then by the second strong Wolfe condition and (3.1), we have

dTk yk = dTk gk+1 − dTk gk ≥ −(1− σ)dTk gk ≥ c(1− σ)∥gk∥2. (3.15)

Theorem 3.4. Suppose that the sequences {xk} and {dk} are generated by ECCHD
Algorithm, where the search direction dk is such descent and αk satisfies strong Wolfe
condition, then

lim inf
k→∞

∥gk∥ = 0. (3.16)

Proof. Suppose on the contrary, that (3.16) does not hold, which means the gradient is
bounded away from zero and there exists a constant ϵ > 0, such that ∥gk∥ ≥ ϵ.

Claim The search direction defined by (1.6) is bounded, i.e., there exists a constant
P > 0, such that

∥dk+1∥ ≤ P, ∀k ≥ 0. (3.17)

We prove this claim by induction. Let D be the diameter of the level set. Then from the
Lipschitz continuity of the gradient, it follows that ∥yk∥ = ∥gk+1 − gk∥ ≤ L∥sk∥ ≤ LD.
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Therefore, using (1.7), (1.8), (2.1) and (3.12), we have

|βk| = |(1− θk)β
HS
k + θkβ

DY
k |

≤ |βHS
k |+ |βDY

k |

≤
|gTk+1yk|
|dTk yk|

+
∥gk+1∥2

|dTk yk|

≤ ∥gk+1∥∥yk∥
c(1− σ)∥gk∥2

+
∥gk+1∥2

c(1− σ)∥gk∥2

≤ ∥gk+1∥LD + ∥gk+1∥2

c(1− σ)∥gk∥2

≤ ΓLD + Γ2

c(1− σ)ϵ2
= E. (3.18)

For k = 0, we have, d1 = −g1+β1d0, which implies that d1 = −g1−β1g0, since d0 = −g0.
This yield

∥d1∥ ≤ ∥g1∥+ |β1|∥g0∥
≤ Γ + EΓ = Γ∗,

that is, the claim (3.17) holds for k = 0 Next we assume that the claim (3.17) is true for
k, that is, ∥dk∥ ≤ P. To show it is true for k + 1, consider the search direction (1.6)

dk+1 = −gk+1 + βkdk.

Now, using (3.12) and (3.18), we obtain

∥dk+1∥ ≤ ∥gk+1∥+ |βk|∥dk∥
≤ Γ + EP,

and therefore the claim holds. Now since (3.17) holds for all k, then we have

1

∥dk∥
≥ 1

P
, P > 0. (3.19)

From the above inequality, it shows that

∞∑
k=0

1

∥dk∥2
= +∞. (3.20)

Considering (3.1), (3.13) and (3.14) we conclude that

c2ϵ4
∞∑
k=0

1

∥dk∥2
≤

∞∑
k=0

c2∥gk∥4

∥dk∥2
≤

∞∑
k=0

(gTk dk)
2

∥dk∥2
< +∞. (3.21)

It is obvious that, (3.20) and (3.21) cannot hold concurrently. Thus, (3.16) must hold.

‘
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4. Numerical Results

In this section, we present the implementation of ECCHD Algorithm on the set of 230
benchmark problems obtained from [46, 47]. The method is compared with the hybrid
CG methods in [27, 43, 48, 49]. To implement CG parameters in all the methods, we use
the following parameter; δ = 0.00001 and σ = 0.0001, and the code is written in Matlab
(R2018a) version and run on a personal computer with processor 2.20 GHz and memory
3.0 GB. The iteration is terminated when ∥gk∥≤10−6. Numerical results were compared
based on performance profile of Dolan and Moré [50]. To visualize the performance of the
methods, the test function results in the Figures 1-2 are achieved using Table 1 and by
running each solver on the benchmark problems and recording the number of iterations
and elapsed time to minimize the problems. The higher the solver goes, the more efficient
is the method, that is, when the value of Ps(τ) is high. The Ps(τ) as given in [46], is the
fraction from the set of problems, with the high appearance of τ ratio. Given the problem
P and the optimization solver S respectively, the performance comparison of a problem
by a particular algorithm is measured. So if we allow Ps(τ) = P (τ) and S = τ , then the
numerical results were compared graphically. Figures 1-2 show the performance of the
hybrid coefficients are compared based on number of iteration and central processing time
per unit with 100 and 1000000 as the smallest and highest dimensions of the test problems
respectively. The y-xis of the figures shows the fraction of how fast the coefficient converge
while the x-axis determines the fraction of how many problems a solver is able to solve
successively.

The analysis of Figure 1, for the value τ chosen within 0 < τ < 0.5 interval, shows the
portion of ECCHD Algorithm is the best on the set of problems P is 54%. While HHD,
FRPRPCC, HHSFR and CCOMB algorithms are 30%, 25%, 20% and 10% respectively.
Clearly, ECCHD method is efficient and closer to the optimal solution with the highest
probability. However, if we increase the τ to an interval τ ≥ 0.5, the ECCHD and
HHD methods solved problems with 98% accuracy respectively in the elapsed time, while
FRPRPCC, HHSFR and CCOMB algorithms is 94%. This shows that, the ECCHD
and HHD methods are computationally efficient than other schemes. Meanwhile, if τ of
interest is between 0.5 < τ < 1.0, the proposed method has 98% of the problems solved,
against 84% of HHD. Therefore, we further make comparisons among the five schemes
with the number of iterations in Figure 2, which shows ECCHD and HHD methods are
the best on the given problems with 97% accuracy respectively. On the other hand, the
HHD, FRPRPCC, HHSFR and CCOMB methods solve the problems with the following
percentages 80%, 79%, 70% and 69% respectively, when the value of τ is within 0 <
τ < 0.05 interval. Obviously, the ECCHD scheme has demonstrated to the best method.
However, if we increase the τ to an interval τ ≥ 0.05, the ECCHD and HHD methods
solved the benchmark problems with 97% number of iterations, while other methods
attain 95%, this implies that the numerical results of ECCHD and HHD algorithms are
computationally efficient than other schemes. Clearly, both figures indicated that the
ECCHD is promising and efficient than other CG coefficients.
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Figure 1. Time performance profiles of the methods.

 

 

Figure 2. Number of iterations performance profiles of the methods.
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Table 1. Numerical Results of FRPRPCC, CCOMB, HHD, ECCHD
and HHSFR Methods

S/N Test Functions DIMM IN. PT. FRPRPCC CCOMB HHD ECCHD HHSFR

NI CPUT NI CPUT NI CPUT NI CPUT NI CPUT

1 EXT. WHITE & HOLST 100 (-1.2,1,,-1.2,1) 9 11.1358 9 0.0786 9 0.1249 9 0.0372 9 0.0222
2 200 9 0.0243 9 0.0349 9 0.027 9 0.0261 9 0.0276
3 500 9 0.1354 9 0.0512 9 0.0668 9 0.048 9 0.0528
4 1000 9 0.0993 9 0.0784 9 0.1916 9 0.074 9 0.0866
5 2000 9 0.1923 9 0.2215 9 0.2007 9 0.1291 9 0.2149
6 5000 9 0.3605 9 0.4119 9 0.4987 9 0.3704 9 1.8073
7 10000 9 1.4406 9 0.7433 9 0.7542 9 0.6634 9 0.7506
8 20000 9 1.4008 9 1.8182 9 1.41 9 1.3482 9 1.441
9 50000 9 4.3154 9 3.3201 9 3.3965 9 3.2868 9 3.3691
10 100000 9 6.5216 9 6.663 9 6.6951 9 6.4014 9 6.7161
11 200000 9 16.2495 9 13.461 9 12.988 9 12.8021 9 13.27

12 POWER 100 (1,,1) 141 0.1564 141 0.1598 141 0.1575 141 0.106 141 0.1223
13 200 297 0.3928 296 0.265 297 0.269 296 0.3333 296 0.3735
14 500 771 0.8712 768 0.9454 769 0.9301 769 0.6165 770 0.9295
15 1000 1564 1.9313 1560 2.2459 1563 2.3713 1562 2.0863 1562 5.0019
16 2000 3180 15.6438 3151 16.3639 3169 19.299 3166 17.2814 3163 21.038
17 5000 8627 121.587 7985 130.331 8290 105.32 8280 70.0589 8241 74.183

18 QUADRATIC QF1 100 (1,,1) 56 2.6411 56 2.2889 56 1.1531 56 1.1494 56 0.8973
19 200 81 1.9852 81 2.6594 81 2.684 81 0.2409 81 0.2161
20 500 131 0.3755 131 0.3979 131 0.3345 131 0.2756 131 0.2913
21 1000 187 0.5925 187 0.4562 187 0.4444 187 0.3678 187 0.5003
22 2000 267 0.8061 267 0.8809 267 0.8166 267 0.7987 267 0.7807
23 5000 426 3.1434 426 8.3423 426 8.7483 426 5.2584 426 6.3023
24 10000 606 19.950 606 20.767 606 15.7457 606 13.4312 606 19.744
25 20000 862 41.886 862 53.5483 862 59.7891 862 57.2932 862 59.281
26 50000 1373 305.98 1373 219.48 1373 186.73 1373 182.774 1373 193.22

27 EXT. ROSENBROCK 100 (-1.2,1,,-1.2,1) 16 0.0336 16 0.1527 16 0.0199 16 0.0188 17 0.0629
28 200 16 0.0295 16 0.0348 16 0.0286 16 0.0249 17 0.0295
29 500 16 0.0629 16 0.0479 16 0.041 16 0.0399 17 0.044
30 1000 16 0.064 16 0.0584 16 0.0668 16 0.0587 17 0.3893
31 2000 16 0.4093 16 0.0964 16 0.1351 16 0.0901 17 0.1808
32 5000 16 0.9443 16 0.2803 16 0.2903 16 0.2523 17 0.3711
33 10000 16 0.6076 16 0.4581 16 0.5381 16 0.4586 17 0.6135
34 20000 16 0.8636 16 1.0742 16 0.8229 16 0.7883 17 1.342
35 50000 16 1.937 16 2.0762 16 1.9201 16 1.9755 17 2.2186

36 EXT. QUADRATIC P. 100 (1,,1) 20 0.2902 22 0.0766 21 0.0741 20 0.0735 20 0.0787
37 200 25 0.324 25 0.2507 25 0.5685 25 0.5111 25 0.7371
38 500 38 2.8968 38 10.340 37 12.845 37 3.4006 38 12.558
39 1000 41 6.3256 42 20.400 41 18.531 41 5.8633 42 7.988
40 2000 60 12.061 62 11.813 60 8.8443 61 6.8858 61 4.739
41 5000 F F 85 185.84 84 170.15 82 41.709 82 18.826
42 10000 F F F F 103 16.034 104 17.746 103 17.588
43 20000 F F F F 132 36.967 F F 133 37.691
44 200000 8 0.0214 9 0.0226 9 0.0247 9 0.0219 10 0.021
45 500000 13 0.0502 13 0.0556 12 0.0591 12 0.0537 14 0.0539
46 1.00E+06 12 0.0959 14 0.1369 13 0.0842 13 0.0823 18 0.1342
47 EXT. FREUD. & ROTH 100000 (-2,,-2) 16 4.0322 16 4.116 16 3.8218 16 3.8763 17 25.715

48 EXT. FREUD. & ROTH 100 (2,,2) 2 0.0046 2 0.0046 2 0.0046 2 0.0045 2 0.0047
49 200 2 0.008 2 0.0079 2 0.0091 2 0.0088 2 0.0093
50 500 2 0.0141 2 0.0151 2 0.0188 2 0.0147 2 0.0148
51 1000 2 0.0225 2 0.0234 2 0.0215 2 0.0211 2 0.0219
52 2000 2 0.0344 2 0.039 2 0.0339 2 0.0337 2 0.0386
53 5000 2 0.1557 2 0.1685 2 0.1535 2 0.1427 2 0.1396
54 10000 2 0.2457 2 0.2191 2 0.2249 2 0.2244 2 0.249
55 20000 2 0.2777 2 0.3338 2 0.375 2 0.3219 2 0.4121
56 50000 2 0.6799 2 0.9597 2 0.5487 2 0.5274 2 0.7138
57 100000 2 1.6453 2 2.0904 2 1.7307 2 1.7616 2 0.9995
58 200000 2 1.7656 2 1.7916 2 2.5342 2 2.2577 2 4.0865
59 500000 2 8.5502 2 99.107 2 20.060 2 32.074 2 5.1211
60 1.00E+06 2 17.583 2 11.338 2 27.472 2 17.541 2 61.437

61 EXTENDED PENELTY 100 (1,2,3,) 8 0.165 9 0.0187 9 0.0862 9 0.0205 10 0.0204
62 200 13 0.0479 13 0.0592 12 0.0614 12 0.0459 14 0.0494
63 500 12 0.0826 14 0.0839 13 0.0853 13 0.081 18 0.1459
64 1000 23 0.2081 21 0.2594 21 0.2669 21 0.2089 20 0.1921
65 2000 13 0.2305 12 0.2671 13 0.3756 13 0.3693 15 0.441
66 5000 49 4.4818 49 3.0709 F F F F 49 7.2762
67 10000 F F 63 21.600 63 16.9713 63 16.582 F F
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S/N Test Functions DIMM IN. PT. FRPRPCC CCOMB HHD ECCHD HHSFR

NI CPUT NI CPUT NI CPUT NI CPUT NI CPUT

68 EXTENDED POWEL 1 100 (0,,0) 3 0.0293 3 0.0068 3 0.0055 3 0.0054 3 0.0058
69 200 3 0.01 3 0.0094 3 0.0092 3 0.0089 3 0.0095
70 500 3 0.0158 3 0.0183 3 0.0148 3 0.0062 3 0.0152
71 1000 3 0.0928 3 0.0522 3 0.0333 3 0.0226 3 0.0244
72 2000 3 0.0989 3 0.0425 3 0.0574 3 0.0789 3 0.1917
73 5000 3 0.4774 3 1.0642 3 0.768 3 0.6637 3 2.4394
74 10000 3 0.3591 3 0.3431 3 0.2404 3 0.2315 3 0.5248
75 20000 3 0.4544 3 0.4888 3 0.6899 3 0.5718 3 1.0432
76 50000 3 3.0521 3 0.8877 3 0.9623 3 0.9261 3 1.0112
77 100000 3 2.0481 F F 3 1.9546 3 1.929 3 2.0928

78 DIXON & PRICE 100 (-1,,-1) 218 0.2595 227 0.2255 206 0.2639 207 0.1909 213 0.2479
79 200 350 0.4738 386 0.5014 400 0.4614 401 0.4803 398 0.4425

80 SUM OF SQUARES 100 (5,,5) 60 0.0509 60 0.0466 60 0.0458 60 0.0458 60 0.0477
81 200 87 0.1086 87 0.1155 87 0.1098 87 0.1094 87 0.1135
82 500 140 0.3038 140 0.2557 140 0.3186 140 0.2721 140 0.32
83 1000 200 0.4705 200 0.4405 200 0.448 200 0.4448 200 0.512
84 2000 284 0.8714 284 0.759 284 0.8685 284 0.8443 284 0.9415
85 5000 453 9.6165 453 7.575 453 2.3703 453 5.540 453 9.5885
86 10000 645 21.346 645 22.94 645 23.875 645 21.979 645 21.650
87 20000 916 50.923 916 56.85 916 49.003 916 48.749 916 54.732
88 50000 1457 173.56 1457 250.1 1457 98.808 1457 72.764 1457 183.77
89 100000 2070 573.19 2070 5E+03 F F F F F F

90 EXTENDED BEALE 100 (1.8,,1.8) 7 0.0222 7 0.0213 7 0.0216 7 0.0211 7 0.0223
91 200 7 0.0385 7 0.0387 7 0.0387 7 0.0377 7 0.039
92 500 7 0.0741 7 0.0756 7 0.0736 7 0.0753 7 0.0791
93 1000 7 0.1253 7 0.1452 7 0.1263 7 0.1255 7 0.1704
94 2000 7 0.2344 7 0.2437 7 0.2147 7 0.2136 7 0.27
95 5000 7 0.3835 7 0.5829 7 0.5549 7 0.5212 7 0.554
96 10000 7 0.8223 7 0.8216 7 0.8302 7 0.7445 7 0.925
97 20000 7 1.3135 7 1.3129 7 1.3155 7 1.2607 7 1.2767

98 50000 7 2.6412 7 2.5963 7 3.5127 7 4.4183 7 1.2767
99 100000 7 6.2606 7 4.2528 7 9.8756 7 5.8942 7 10.810
100 200000 7 24.487 7 54.752 7 82.367 7 59.214 7 57.810
101 500000 7 150.30 7 62.831 7 205.46 7 117.52 7 339.63
102 1.00E+06 F F F F F F F F F F

103 RAYDAN 1 100 (1,,1) 69 2.7277 65 1.6133 64 1.4692 64 1.4136 65 1.5453

104 EXT. TRIDIAGONAL 1 100 (2,,2) 5 0.8581 5 0.3836 5 0.4004 5 0.2252 5 0.3261
105 200 5 0.8136 5 0.5028 5 0.5798 5 0.4355 5 5
106 500 5 1.2614 5 1.464 5 1.5136 5 1.4393 5 1.3706
107 1000 5 1.9037 5 1.9558 5 3.6689 5 1.8612 5 1.9089
108 2000 5 2.774 5 2.9164 5 3.6039 5 3.0007 5 3.5958
109 5000 5 9.1082 5 6.9239 5 8.4434 5 6.2449 5 6.6989
110 10000 5 12.495 5 13.488 5 13.259 5 12.374 5 12.636
111 20000 5 28.427 5 26.162 5 24.781 5 24.489 5 25.570
112 50000 5 58.945 5 60.457 5 60.175 5 59.881 5 59.496
113 100000 6 9.0109 6 12.308 5 10.120 5 8.9121 5 10.673
114 200000 6 21.602 6 25.107 5 25.013 6 20.775 5 25.556
115 500000 6 57.716 6 59.530 5 55.896 5 54.737 5 55.331
116 1.00E+06 5 114.44 6 115.60 6 117.17 5 116.12 5 120.38

117 EXT. HIMMELBLAU 100 (1,,1) 4 0.0374 4 0.0103 4 0.0087 4 0.0085 4 0.0085
118 200 4 0.0138 4 0.0144 4 0.0138 4 0.0136 4 0.0141
119 500 4 0.0238 4 0.0225 4 0.0216 4 0.0106 4 0.0225
120 1000 4 0.0324 4 0.0322 4 0.0312 4 0.0309 4 0.034
121 2000 4 0.0541 4 0.0556 4 0.0537 4 0.0512 4 0.0554
122 5000 4 0.19 4 0.2137 4 0.2265 4 0.1971 4 0.1569
123 10000 4 0.3308 4 0.3487 4 0.3189 4 0.2421 4 0.313
124 20000 4 0.4021 4 0.4551 4 0.4623 4 0.4328 4 0.3955
125 50000 4 0.7933 4 0.7276 4 0.7254 4 0.7223 4 0.7793
126 100000 4 2.4102 4 1.3898 4 2.4247 4 1.3318 4 2.7941
127 200000 4 4.8897 4 5.1342 4 3.3299 4 2.6184 4 4.937
128 500000 4 12.595 4 10.873 4 11.279 4 11.333 4 12.120
129 1.00E+06 4 24.992 4 21.040 4 18.88 4 14.343 4 19.981
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S/N Test Functions DIMM IN. PT. FRPRPCC CCOMB HHD ECCHD HHSFR

NI CPUT NI CPUT NI CPUT NI CPUT NI CPUT

130 FLETCHER FUNCTION 100 (0,,0) 355 0.4989 358 0.4435 352 0.3941 352 0.2947 352 0.3829
131 200 699 0.9529 701 0.9919 660 0.9876 659 0.9069 658 1.0044
132 500 1245 2.1097 1248 2.2616 1325 2.3926 1325 2.3075 1331 2.663
133 1000 1743 9.9177 1645 8.4317 2563 9.5703 2310 9.4725 2562 10.565
134 2000 3898 35.816 6346 51.358 3443 30.686 3541 31.874 3499 34.039
135 5000 8177 268.52 8124 284.94 7993 251.94 7964 248.01 7970 287.19

136 SHALLO FUNCTION 100 (-2,,-2) 5 0.0106 6 0.0107 5 0.0099 5 0.0094 5 0.01
137 200 5 0.0159 6 0.0222 5 0.0167 5 0.0166 5 0.0176
138 500 5 0.0262 6 0.0278 5 0.0299 5 0.0264 5 0.0272
139 1000 5 0.0461 6 0.0414 5 0.0404 5 0.0366 5 0.0377
140 2000 5 0.0962 6 0.0747 5 0.0773 5 0.0616 5 0.0807
141 5000 5 0.248 6 0.3307 5 0.2422 5 0.1963 5 0.2837
142 10000 5 0.292 6 0.3883 5 0.2748 5 0.2382 5 0.4323
143 20000 5 0.6562 6 0.6936 5 0.6411 5 0.7072 5 1.008
144 50000 5 2.5096 6 2.8122 5 2.6169 5 2.6089 5 3.4761
145 100000 5 7.7083 6 10.004 5 10.064 5 8.9219 5 15.646
146 200000 5 32.578 6 34.305 5 5.6922 5 5.5089 5 5.6798
147 500000 5 13.576 6 13.440 5 11.464 5 10.782 5 14.251
148 1.00E+06 5 29.063 6 28.882 5 25.746 5 25.527 5 28.749
149 EXTENDED POWEL 100 (-1,,-1) 33 0.0222 41 0.0402 31 0.0748 30 0.0732 39 0.0802
150 200 33 0.1309 41 0.1885 31 0.1428 30 0.1332 39 0.1904
151 500 33 0.2586 41 0.3131 31 0.2971 30 0.2465 39 0.2976
152 1000 33 0.3954 41 0.5249 31 0.3969 30 0.3614 39 0.3803
153 2000 33 0.5737 47 0.8672 31 0.5486 30 0.524 39 0.5577
154 5000 34 1.3223 47 1.7564 35 1.3843 32 1.3526 39 1.2876
155 10000 34 2.0873 47 2.7708 35 2.2914 32 1.9508 39 2.3024
156 20000 36 4.1631 47 5.961 35 3.9255 32 3.9024 39 4.3003
157 50000 36 19.711 47 22.247 35 14.095 32 14.306 44 14.844
158 100000 36 31.177 48 47.318 35 34.709 32 34.861 44 39.519
159 200000 36 47.429 48 95.609 35 68.743 32 76.641 44 100.12
160 500000 36 222.60 48 233.17 35 209.92 32 226.72 45 310.02
161 1.00E+06 36 591.66 F F F F F F F F

162 G. TRIDIAGONAL 1 100 (2,,2) 21 0.027 21 0.0264 20 0.026 21 0.024 20 0.0299
163 200 21 0.1458 F F F F 21 0.0291 F F

164 G. TRIDIAGONAL 2 100 (10,,10) 56 0.0607 56 0.0719 54 0.0586 54 0.0544 55 0.0781
165 200 54 0.1165 55 0.1163 54 0.1159 55 0.113 F F
166 500 F F 49 0.5032 50 0.4987 50 0.4454 F F
167 1000 55 0.9442 F F 51 1.3797 51 1.3347 F F

168 DIAGONAL 4 100 (1,,1) 1 0.0036 1 0.0036 1 0.0097 1 0.0058 1 0.0073
169 200 1 0.0141 1 0.0077 1 0.0069 1 0.0067 1 0.0074
170 500 1 0.0105 1 0.011 1 0.0111 1 0.0109 1 0.0114
171 1000 1 0.0175 1 0.0159 1 0.0148 1 0.0156 1 0.0172
172 2000 1 0.0271 1 0.0257 1 0.0271 1 0.0256 1 0.0216
173 5000 1 0.0828 1 0.0828 1 0.0636 1 0.0567 1 0.0762
174 10000 1 0.1946 1 0.0808 1 0.0681 1 0.0405 1 0.0841
175 20000 1 0.0946 1 0.1466 1 0.1018 1 0.0925 1 0.1758
176 50000 1 0.2899 1 0.281 1 0.3045 1 0.2361 1 0.3367
177 100000 1 0.3641 1 0.4007 1 0.3987 1 0.2325 1 0.3723
178 200000 1 0.929 1 1.0057 1 0.9599 1 0.9076 1 1.0822
179 500000 1 12.761 1 46.662 1 2.6979 1 2.6056 1 2.9852
180 1.00E+06 1 5.8091 1 6.1905 1 7.5586 1 4.7769 1 3.3464

181 NONSCOMP FUNCTION 100 (3,,3) 33 0.0595 33 0.0801 33 0.0574 33 0.0562 33 0.0764

182 NONSCOMP FUNCTION 200 (-5,,-5) 33 0.1791 33 0.4742 34 0.2061 34 0.2068 33 0.1468
183 500 35 0.339 35 0.4512 36 0.4168 36 0.4625 35 0.4544
184 1000 37 0.6032 37 0.781 37 0.6056 37 0.5484 37 0.7639
185 2000 38 0.9586 40 1.328 39 0.7333 39 0.6687 38 0.6873
186 5000 37 1.5229 39 1.373 37 1.0129 37 0.8368 37 1.2256
187 10000 34 102.89 35 31.057 33 8.3701 33 3.9223 32 3.4828
188 20000 35 6.6459 35 9.0979 35 15.524 35 6.1521 35 5.5417
189 50000 36 17.596 40 28.232 37 23.197 37 2.8626 36 42.864
190 100000 33 24.274 38 81.169 37 5.6929 37 6.4839 37 6.6469
191 200000 35 42.713 35 55.033 35 27.210 35 25.871 37 26.598
192 500000 35 77.060 36 360.34 34 128.56 34 66.271 37 55.823
193 1.00E+06 34 180.35 34 323.52 37 341.26 37 340.56 37 78.408
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S/N Test Functions DIMM IN. PT. FRPRPCC CCOMB HHD ECCHD HHSFR

NI CPUT NI CPUT NI CPUT NI CPUT NI CPUT

194 QUADRATIC QFN 2 100 (.5,,.5) 100 0.1088 98 0.1117 98 0.0889 98 0.0861 99 0.0981
195 200 151 0.2198 146 0.2806 151 0.2202 151 0.2046 152 0.2567
196 500 250 0.4401 242 0.4418 250 0.4663 250 0.4456 246 0.4104
197 1000 358 0.805 349 0.8064 359 0.8233 359 0.8218 360 0.7704
198 2000 512 1.3849 498 1.4736 512 1.1935 512 1.4744 513 1.5794

199 EXTENDED DENSCHNB 100 (1,,1) 3 0.1687 3 0.1451 3 0.096 3 0.0954 3 0.1071
200 200 3 0.1712 3 0.3304 3 0.1696 3 0.1661 3 0.1373
201 500 3 0.2304 3 0.016 3 0.0148 3 0.0146 3 0.0151
202 1000 3 0.0214 3 0.0225 3 0.0214 3 0.0214 3 0.0219
203 2000 3 0.0442 3 0.0389 3 0.0387 3 0.0359 3 0.0369
204 5000 3 0.1913 3 0.1018 3 0.1608 3 0.1566 3 0.1055
205 10000 3 0.2588 3 0.2779 3 0.256 3 0.2017 3 0.2694
206 20000 3 0.3859 3 0.7056 3 1.4985 3 0.7014 3 0.7708
207 50000 3 1.9576 3 1.9885 3 1.8556 3 1.4079 3 1.5602
208 100000 4 3.3985 4 3.6695 3 2.2708 3 2.594 3 2.6158
209 200000 4 17.961 4 7.1017 4 5.9478 4 4.9275 4 7.4591
210 500000 4 6.1093 4 10.417 4 16.734 4 14.587 4 143.30
211 1.00E+06 4 11.560 4 15.908 4 12.856 4 11.642 4 16.519

212 EXT. QUADRATIC P1 100 (1,...,1) 3 0.0381 3 0.0122 3 0.01 3 0.009 3 0.0125
213 200 F F F F 5 0.0173 5 0.0169 5 0.0172
214 2000 5 0.0697 F F 5 0.0692 5 0.0687 5 0.0718
215 5000 F F 5 0.2618 5 0.2882 5 0.2733 F F
216 10000 5 0.4959 F F 5 0.4252 5 0.3421 F F

217 HAGER 100 (1,,1) 22 0.0308 23 0.0347 24 0.0291 24 0.0269 24 0.0355

218 GENERALIZED QUARTIC 100 (-2,,-2) 1 0.0772 1 0.0451 1 0.0419 1 0.0352 1 0.0356
219 200 1 0.0553 1 0.0592 1 0.053 1 0.0523 2 0.0723
220 500 1 0.0726 1 0.0666 1 0.0581 1 0.0574 1 0.0716
221 1000 2 0.1284 1 0.0971 1 0.1701 1 0.1195 2 0.1202
222 2000 1 0.2376 1 0.1968 1 0.2384 1 0.1804 2 0.2543
223 5000 1 0.5933 1 0.4688 1 0.4442 1 0.3654 2 0.5195
224 10000 1 1.0798 1 1.2139 1 1.6326 1 1.582 2 2.7674
225 20000 2 4.2819 2 5.238 2 1.6326 2 5.0241 2 7.6603
226 50000 2 19.759 2 25.267 2 36.501 2 21.286 2 36.371
227 100000 F F 1 24.635 1 24.686 1 24.432 1 26.214
228 200000 1 52.473 1 402.19 1 12.533 1 10.689 1 14.771
229 500000 2 364.93 2 144.55 2 177.63 2 58.728 2 40.648
230 1.00E+06 2 109.78 2 87.413 2 101.32 2 118.92 2 153.96

5. Application of ECCHD method on 3DOF robotic motion con-
trol model

In this subsection, we illustrate additional implementation of Algorithm 1 in solving
three degrees of freedom (3DOF) real-time robotic model as suggested in [51]. Briefly, we
describe the three-joints of the discrete-time kinematics model at the position level of a
planar robot manipulator by

f(θk) = ηk. (5.1)

The relation given by (5.1), implies that the function f(·) is the kinematics mapping,
which relate the orientation of any part of the robot is given by the following model:

f(θ) =

b1 cos(θ1) + b2 cos(θ1 + θ2) + b3 cos(θ1 + θ2 + θ3)

b1 sin(θ1) + b2 sin(θ1 + θ2) + b3 sin(θ1 + θ2 + θ3)

 , (5.2)

where, the length of ithrod, is denoted by bi (for i = 1, 2, 3) and θ ∈ R3 of f(θ), is the
vector that indicate the end effector position. Let ηk ∈ R2 be the vector that indicates
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the required path at time, tk. In modeling a motion control robot, at time interval say,
tk ∈ [0, tf ] a series of nonlinear least square problems are generated, which are formulated
in form of problem (1.1) as:

min
θ∈R3

1

2
∥f(θ)− ηk∥2, (5.3)

where ηk represents the end effector-controlled path at tk of a required curve (Lissajous),
which is expressed by [52] as:

ηk =

 1.5 + 0.4 sin(πtk5 )

√
3
2 + 0.4 sin(πtk5 + π

3 )

 . (5.4)

The code and implementation of the Algorithm 1 on (5.1)-(5.4) was performed using
MATLAB R2022a 11th Gen. Intel(R) Core i7-1195G7 and run on a PC with RAM 16
GB that is has CPU of 2.90GHZ. The joint was initialized at time instant, t = 0, and
position vector to be θ0 = [θ1, θ2, θ3] = [0, π

3 ,
π
2 ], with the task period [0, tf inal] that is

divided into 200 parts equally, where length of the rod is, bi = 1 (for i = 1, 2, 3) and
tf inal = 10 seconds. The report of motion control experiment of Algorithm 1 are plotted
in Figures 3–6. Clearly, results of the figures show that the ECCHD method synthesized
the robot trajectories and pass through the desired path as shown in Figures 5–6 with
residuals error of 10−8 as observed from Figures 3–4.

 

 

Figure 3. Error tracking by ECCHD on x–axis.
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Figure 4. Error tracking by ECCHD on y–axis.
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Figure 5. End effector of the ECCHD trajectory of desired path.
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Figure 6. Robot trajectories synthesized by ECCHD.

6. Conclusion

In this paper, we have presented a hybrid CG method from the extended conjugacy
condition. The method uses the choice of the modulating parameter t that incorporate
the classical HS and DY updates in such away that, we generalize DL-type parameter, so
that if t = 1, then its scale down to a method that uses the secant equation. Theoretical
and numerical computations adopt inexact line search. The results of the comparison with
some known CG coefficients show the algorithm is robust, efficient and converge globally
using strong Wolfe condition. The Computational experiments indicated that the DL
algorithms are robust and more efficient than some well-known CG methods. Despite the
fact that several optimal choices for DL parameter were proposed, the best choice of the
parameter t still remains subject of consideration. The proposed method is also applied
to solve three degrees of freedom (3DOF) real-time motion control model.
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