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2 S. Suwansoontorn et al.

1. INTRODUCTION

The theory of variational inequalities develop rapidly and its applications are highly
productive. In this research, we study the monotone variational inequality over triple
hierarchical problem. Throughout this paper, let C be a closed convex subset of a real
Hilbert space H with the inner product (-,-) and the norm || -||. The weak convergence
and strong convergence are denoted by — and —, respectively.

Before we mention on problems in this research, we recall some mapping definitions.
A mapping [ : C — C is called p-contraction if there exists a constant p € [0,1) such
that

1f (@) = FWIl < pllz —yll, Va,y € C.

A mapping T : C' — C is said to be nonexpansive if
[Tz —Ty| < [lz —yl, Vz,y € C.

A mapping T : C — C is said to be firmly nonexpansive if
|ITx — Ty|* < (z —y, Tz — Ty).

A point z € C is a fized point of T provided Tx = z. Denote by F(T) the set of fixed
points of T'; that is, F(T) = {x € C : Tz = z}. If C is bounded closed convex and T is a
nonexpansive mapping of C into itself, then F(T) is nonempty [15].

One of the most interesting problems is the variational inequality which has been
extensively studied by many researchers due to its applications in various disciplines such
as engineering, economics and many others. Exactly, the well-known problem Hartmann-
Stampacchia variational inequality [7] was introduced in 1966, its aim is to find z € C
such that

(Az,y —x) >0, Yy € C, (1.1)

where A is a nonlinear mapping. The set of solutions of (1.1) is denoted by VI(C, A).
That is, VI(C,A) = {z € C : (Az,y — z) > 0, Vy € C'}. The methodologies for solving
this problem has been widely used and improved as shown in the literature [3, 5, 20—

’ ]

Later, the more complicated problem, that is the variational inequality problem over
the fixed point set of a nonexpansive mapping, was introduced and it is well-known in
the name of hierarchical problem. Since it has been discovered, there are many extended
results which have been published continuously (see [2, 6, 10, 25, 26, 30-33]). This problem
was state as follow:

For a continuous monotone mapping A : H — H and a nonexpansive mapping T :
H — H, find 2* € VI(F(T),A) = {:1:* e F(T): (Ax*,z —2*) >0, Vx € F(T)}, where
F(T) # 0. The solution set of the hierarchical problem is denoted by S.

Moreover, there is the variational inequality problem over the solution set of the
variational inequality problem over the fixed point set of a nonexpansive mapping (see
[8, 9, 1113, 28]), which is called triple-hierarchical problem. Let A : H — H be an
inverse-strongly monotone, B : H — H a strongly monotone and Lipschitz continuous
and T : H — H a nonexpansive mapping. The triple hierarchical problem is to find

z*eVI(S,B) = {x* € S:(Bx*,x —z*) >0, Vx € 5}7 where S :=VI(F(T),A) # 0.

)
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A mapping A : H — H is said to be monotone if
(Az — Ay,z —y) >0, Yo,y € H.
A mapping A : H — H is said to be a-strongly monotone if there exists a positive real
number « such that
A mapping A : H — H is said to be [S-inverse-strongly monotone if there exists a
positive real number 8 such that
(Az — Ay, x —y) > || Az — Ay|?, Y,y € H.
A mapping A : H — H is said to be L-Lipschitz continuous if there exists a positive
real number L such that

Az — Ay|| < Lljz —yl|, Va,y € H.

A linear bounded operator A is said to be strongly positive on H if there exists a
constant 4 > 0 such that

(Az,a) > ||, Vo € .
The various methods for solving the triple hierarchical problem were widely proposed.

In 2000, Moudafi [18] introduced the viscosity approximation method to solve the fixed
point problems by both implicit and explicit methods, which are stated as follows:

En 1
n=———f(wn) + ——Txy,, N, 1.2
x 1+€nf(x)+1+€n T, VN € (1.2)
and
xr1 EO,
1.3
{ Tyl = Liiznf(x”) —+ %&nT"E"’ Vn S N, ( )

where a self mapping T : C — C is nonexpansive, f : C — C is a contraction and
en € (0,1) for all n € N.

Later in 2015, Xu et.al [35] considered the following the viscosity method to the implicit
midpoint rule,

xr € C, 14
Tnt1 = anf(zn) + (1 — an)T(%)v Vn €N, (14)

where «,, € (0, 1) satisfies certain assumptions and f is a contraction. They verified that
the above iterative sequence {z,} converges to a unique fixed point.

Next, Ke and Ma [14] introduced the following generalized viscosity implicit rule
T € C, (1 5)
Tnt1 = anf(zn) — (L — an)T(snxpn + (1 — $p)Tpy1), Y >0, '

where a,, s, € (0,1) satisfy some certain conditions, f : C — C is a contraction. They
proved the sequence converges to a unique fixed point.

Moreover, in 2011, Dhakal and Sintunavarat [1] extended the previous idea by propos-
ing the viscosity method to the implicit double midpoint rule for a nonexpansive mapping.
They constructed the algorithm by generating the sequence {z,} by the following:

x1 € C,
{ Tnt1 = Oénf(%) -(1- Ocn)T(L;”"“)7 Vn > 0, (1.6)
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4 S. Suwansoontorn et al.

where a,, € (0,1), f : C — H be a contraction satisfying some conditions. Their strong
convergence theorem is proved under some control condition to gaurantee the solution of
the mentioned problem.

Owing to the motivation from the previous studies, in this paper, we establish an
algorithm for solving the variational inequality over the triple hierarchical problem as
shown below.

Let B : C — C be a (-strongly monotone and L-Lipschitz continuous. Find z* €
Q such that

(Bx*,x —z*) >0, Vx € Q, (1.7)

where Q := VI(F(T), A—~f) # 0, T is a nonexpansive mapping, A : C — H is a strongly
positive linear bounded operator and f : C' — H is a p-contraction. This solution set of
(1.7) is denoted by Y := VI(Q2, B). The strong convergence result is also proved under
some weak assumptions.

2. PRELIMINARIES

Let H be a real Hilbert space and C' be a nonempty closed convex subset of H. Recall
that the projection Po from H onto C, mapping each x € H to the unique point in C,
satisfies the following property

— Po|| = min ||z — y]|.
|z — Pox| gggllx yll

We sometimes call this projection as the nearest point of z in C' and denote it by Pox.
Next, we state some lemmas which will be used in the rest of this paper.

Lemma 2.1. The function u € C is a solution of the variational inequality (1.1) if and
only if u € C satisfies the relation u = Po(u — MNAw) for all A > 0.

Lemma 2.2. Fora givenz€ Hyue C,u=Poz < (u—z,v—u) >0, YveC.
It is well known that Pc is a firmly nonerpansive mapping of H onto C' and satisfies

||PCI7PC?J||2§<chfpcy7z7y>a Va:,yGH. (21)

Moreover, Pox is characterized by the following properties: Pox € C and for all x €
H,yeC,

(x — Pox,y — Pox) < 0. (2.2)
Lemma 2.3. [3]There holds the following inequality in an inner product space H
lz +yl? < llz]* + 2(y. x +y), Yo,y € H.

Lemma 2.4. [I]Let C be a closed convex subset of a real Hilbert space H and let T :
C — C be a nonexpansive mapping. Then I — T is demiclosed at zero, that is, x, — x
and x, — Tx, — 0 implies x = Tx.

Lemma 2.5. [I6]Assume A be a strongly positive linear bounded operator on a Hilbert
space H with coefficient ¥ > 0 and 0 < p < ||A[|71, then |[I — pA| <1 — p7.

Lemma 2.6. [19]FEach Hilbert space H satisfies Opial’s condition, that is, for any se-
quence {x,} C H with x, — x, the inequality

liminf ||z, — 2| < liminf ||z, — y||,

hold for all y € H with y # x.
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Lemma 2.7. [24]Let {x,} and {y,} be bounded sequences in a Banach space X and
let {B.} be a sequence in [0,1] with 0 < liminf, o B, < limsup,_, . Bn < 1. Suppose

Tni1 = (1= Bn)Yn + Buwn for all integers n > 0 and limsup,, , . (|Yn+1 — Ynll — [|[Zng1 —
z,|]) < 0. Then, limy, o0 [[Yn — || = 0.

Lemma 2.8. [31]Let B : H — H be (-strongly monotone and L-Lipschitz continuous
and let p € (0, i—‘j) For X\ € [0,1], define T\ : H — H by Th(z) := = — AuB(x) for all
x € H. Then, for all x,y € H,

ITx(z) = Ta(y)ll < (1= A7)[lz =yl
hold, where T is defined by 1 — /1 — u(2B — pL2) which is in the interval (0,1].
Lemma 2.9. [16, 34]Assume {a,} is a sequence of nonnegative real numbers such that
ant1 < (1 —n)an + 6n, ¥n >0,
where {v,} C (0,1) and {d,} is a sequence in R such that

(Z) 23;;1 Tn = OQO,
(i) limsup,,_, o % <0 or Y2 10, < oo
Then lim,, s an = 0.

3. MAIN RESULT

In this section, we introduce our new iterative algorithm which is generated to solve the
monotone variational inequality over triple hierarchical problem and exactly proved its
convergence theorem that can gaurantee the convergence to the solution of the problem.

Theorem 3.1. Let H be a real Hilbert space, C be a closed conver subset of H. Let
A C — H be a strongly positive linear bounded operator, f : C — H be a p-contraction, -y
be a positive real number such that '77?1 <y < % < % wherey € (0,00). LetT : C — C be a
nonexpansive mapping, B : C — C be a B-strongly monotone and L-Lipschitz continuous.
Let ¢ : C — C be a k-contraction mapping with k € [0,1). Suppose {x,} is a sequence
generated by the following algorithm, for an arbitrary xy € C,
{ 2n = TPo[I — 0pi1(A —vH)(wnzpn + (1 — wp)xns1), (3.1)
Tl = @@y + (1 — 1) Tpt1) + (1 — an)(I — pfnB)zn, Yn >0, '
where {a }, {0} C [0,1]. If u € (0, i—é) is used and if {Bn} C (0,1] satisfy the following
conditions:
(C1): 22 1|0n+1 — On| < 00, 216, = 00;
(C2): 521 |Bpt1 — Bal < 005
(C3): X8 |ant1 — a| < 00, limy, 00 iy = 0;

(C4): 6 < B and B < oy

Then {x,} converges strongly to x* € Y, which is the unique solution of the variational
inequality:

Find x* € T such that (I — ¢)a*,x —x*) >0, Vx € Y, (3.2)

where Y is the set VI(Q, B) which is VI(VI(F(T), A—~f), B),
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Proof. First, we aim to show the existence of a sequence {x,,} defined by (3.1). Consider
the mapping S,, : C — C by

Spx = O¢7L¢(T7LU+ (1 _Tn)m) + (1 _O‘n)(I_M/BnB)TPC[I_(Sn—&-l(A_’Yf)](wnv"" (1 _wn)x)

for all x € C. We can verify that the mapping S,, is a contraction for all n € N and
z,y € C as shown below.

Snz = Syl
= ‘ and(rpv + (1 —rp)x)
+(1 = an)(I = pBuB)TPoll = 8p41(A =1 ))](wav + (1 wy)a)
—and(rav + (1= ra)y)
~(1 = an)(I = uBaB)T POl = by (A = 1 f)(wnv + (1 = wa)y)|

< ano(l —rp)a — (1 — 1)yl

+(1 = a)|[(I = pBuB)TPell — b1 (A= 7))L — wy)z

—(I = pBpB)TPell — 61 (A —~f)I(1 - wn)yH
< (I =rpkllz =yl + (1 —an)(1 = Ba7) *

||TPC[I = Opt1(A =)L —wp)x — TPc[l — 6p41(A—~f)I(1— wn)@/”
< ol —r)kllz —yll

+(1 = an)(1 = Bur)(1 - wn)||§n+1('7f$ —vfy) + U = nt1d)(x — y)”
< on(l—r)kllz —yll

(1= an)(1 = Bur)(1 = wa) (Fusr7plle =yl + (L= GnsrDlla =yl
= (an@ =k + (1= an)(1 = Bar) (1 = wa) (L= (7= 70)bu11) )l =yl

where & = a,(1 — )k + (1 — o) (1 = B,7)(1 — wy) (1 = (¥ — 7p)dn+1) € [0,1) for all
n € N. This shows that the mapping .S, is a contraction for all n € N. According to the
Banach contraction principle, we can conclude that S,, has a unique fixed point for all
n € N. Thus we can verify the existence of a sequence {z,,} defined by (3.1). To make an
easy description of the proof, we will divide into the following four steps.

Step 1. We will prove that {x,,} is bounded. For any ¢ € F(T'), we have

[Znt1—all = lond(rpzn + (1 —rp)znt1) + (1= an)(l — pBrB)2zn — ||
= |lend(rnzn + (1 — rp)2nt1)

+(1 —an)(I — pBpB)TPe[l — 6pt1(A — v f)]

(Wnzn + (1 — wn)Tpi1) — 4|

an|[¢(rnmn + (1 —10)2nt1) — 4|

+(1 = an)|( = pBnB)T Pl — 011 (A — 7 f)]

(wn-rn + (1 - wn)xn-&-l) - QH

IN
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IN

an|lp(rnzn + (1 = 10)2ni1) — ¢qll + anllog — gl
+(1 = an)||(I = pfnB)TPc[I = 6p41(A = 7)) (wpn + (1 — wn)2ni1)

~(I = pBu BYTPoll = bu1(A =71

k| (ran + (1 = n)ns1) = gl + anllég — gl

(1= an)(1 = fur) *

| TPCIT = 6051 (A= 1)) (wnn + (1 = wn)41) = TPOI = b2 (A = 7f))d
ki (rallen = all + (1= ra) i1 = all) + anllég — gl

+(1 —ap)(1 = B,7) *

|17 = B4 = 3w + (1= wa)agn) = [ = b (4 =Dl
Qakrallen = gl + €nk(l = 7o) a1 = qll + anllég — gl

(1= @) (1 = Bu7) (Fns1 7S (wnn + (1 = wa)wnin) = 7fal

IA

IN

IN

(1 = S 1N (wan + (1 = wa)wns1) — all)
ankrp ||z, — qll + ank(l —rp)l[2ng1 — ql| + anllog — 4|
+(1 = an)(1 = B7) (Snsrvplwnzn + (1 = wa)znss =g

IN

(1= n1 ) [wn@n + (1 = wa)wns1 = )
= ankrpl|zn — gl + ank(l —ro)[[zng1 — gl + anllog — 4|

+(1 = an)(1 - /BnT)(l -(v- %0)5n+1)||wn$n + (1 = wp)Tng1 — 4l
= ankra|lzn — gl + k(1 —rn)l|zng1 — gl + anllég — 4

+(1 — ) (1 — 5n7)(1 -y - 7p)6n+1) (wnllxn —ql| + (1 —wy)||zn1 — q”)
= ankrpl|zn — gl + ank(l —ro)[[zng1 — gl + anllog — 4|

(1= an)(1 = Bum) (1 = (T = 7p)0n+1)wnllzn — gl|

+(1 = an)(1 - /BnT)(l (- 79)5n+1)(1 — wp)|Tn11 — 4|

= (nkra+ (1= an) (1 = Bum) (1 = (7= ¥)ut1)wn ) — all + €allég — gl
(k{1 =) + (1= @) (1 = Bam) (1 = (7 = 10)0011) (1 = wa) ) zss — g
= (nkra+ (1= an) (1 = Bur) (1 = (7 = ¥)0nt1)wn )20 = all + aallég — gl
@k = ankra + (1= an)(1 = Ba7) (1 = (7 = 1)) (1 = w) ) ns1 = gl
It implies that

(el
ankry, + (1 —ap)(1 — BnT)(l -y - 'yp)5n+1)wn

= 1 — ank + ankry, — (1 — o) (1= Bp7) (1 = (7 = 7p)0nt1) (1 — wy) lzn =l

Bangmod Int. J. Math. & Comp. Sci., 2025



8 S. Suwansoontorn et al.

an
Jr1 — ank + ankry — (1 — an)(1 = Bu7) (1 = (¥ = ¥p)bn41) (1 — wy,)

léq — 4l

Since

ok + (1= on)(1 - BnT)(l -(v- 7P)5n+1) — k(1 —ry)
~(1 = an)(1 = Bur) (1 = (7 = 1P)onsr) (1 — )

=apk+ (1 —a,)(1l— BnT)(l -(7- 'yp)énﬂ) — ank + ankr,
—(1=on)(1 = Bur) (1 -(y- 7p)5n+1)(1 — wn)

= ankrn + (1= op)(1 - 5717)(1 -(7- 7p)5n+1)(1 = (1 —wy))
= apkr, + (1 —ay,)(1 - 5n7)(1 -(¥- 'Yp)én—&-l)wn

>0,

ialnd L—ank(l=7ry) = (1= an)(1 = Bo7)(1 = (7 = ¥p)0n+1) (1 — wy) — iy > 0. Then, we
ave
I —ank —(1—a,)(1— BnT)(l - (- 7P)5n+1)
1= opk(l —ry) — (1 —an)(1 = B,7) (1 -(v- 7p)6n+1>(1 — wn)

€ (0,1)

and
1—ank(l—7r,) — (1 —an)(l— BnT)(l — (7 - 7P)5n+1)(1 ) € (0,1).
Hence
|Znt1 —qll
= 1— 1- Oénk‘ — (1 — a”)(l B ﬁnT)(l - (3/ B ’Y/O)(Sn-‘rl) H'J; B qH
L—ank(l—ry) — (1— )1 = Bum)(1 = (F = 70)0ns1) (1 — wn) n
b= ) = (1= am) (L= ur) (1= (G — 7)) (=) 12

= (1=M)zn — qll + dnlldg — ql|,

1_04nk_(1_05n)(1_ﬂn7') (1_(77_7/))5714»1)
1—ank(1—rn)—(1=an)(1—Bur) (1= (T=70)bn+1) (1-w,)

v Ln . Then, by mathematical induction im-
1—ank(1—rn)—(1—an)(1=Bn7) (1-(F=7p)8n41 ) (1—ws)
plies that

where )\, is definded by and d,, is defined

|zn —qll < |lwo—ql, YR >0.

Therefore {x,,} is bounded. Consequently, we also obtain {¢(r,x, + (1 — ry)a,41)} and
{TPc[I — 0pt1(A = v)(wnxpn + (1 — wy)xny1)} are bounded.

Bangmod Int. J. Math. & Comp. Sci., 2025
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Step 2. We claim that lim,, ‘

Tpt1 — Tnl| = 0 and lim,, o ||y, — Tz, || = 0. From

(3.1), we have, for each n > 1,

IN

AN

IN

[2n41 — zn|

‘ an@(rntn + (1 —1rp)Tpy1)

+(1 = an)(I = pBaB)T Pl — dny1(A — v ))(wnzn + (1 — wy)Tns1)
—0p-19(rn—1Zn—1 + (1 = rp_1)Ts)

—(1 = an-1)I = pBn-1B)TPc[I — 6p(A — v ) (Wn-1Zpn-1 + (1 — wp—1)2n)
anllp(rnzn + (1 = 10)Tns1) = ¢(rn—1Zn—1 + (1 = rp_1)z5) |

+(1 = an)||(I = pBaB)TPc|l — bny1 (A — v )] (wnzy + (1 — wn)ni1)

—(I = pBn-1B)TPcll — 6 (A —vf)l(wn—12p-1 4+ (1 — wn-1)2n)
+‘an - anflmd)(rnflwnfl + (]- - 7“”,1):['”)”

+an — ana||(I = pBrn—1B)TPo[l — 6, (A — v )(Wn—17n—1 + (1 — wp_1)xn)||
ankl|(rnn + (1= 70)Znt1) = (Tno1@n—1 + (1 = rn1)zn) ||

"Han - O‘nflm(b(rnflxnfl + (]- - Tnfl)mn)H

oy = an1||( = pBu—1B)TPe[l — 60 (A = vf)[(wn—12n—1 + (1 — wn—1)zn)||
(1= ) (||[(T = #Bu BYT POl = 841 (A = 1)) (wain + (1 = w)wn 1)

—(I = pBnB)TPo[l = 0 (A =y )/ (wn12n—1 + (1 — wp1)an)|

(T = B BYTPell — 5(A — 4 ) (wn 101 + (1~ wn 1))

~(I = 1Bt BYTPoll = 80(A = 7)) (wn-12n1 + (1 = wa1)an)])

ank(l = rp)||Xns1 — znll + ankra—1||zn — 2n-1]|

+lan — ap—1||¢(rn—12n—1+ (1 — rn—1)zs) ||

o — an—1|[|(I = pBn-1B)TPcll — 0, (A — v f)l(wn-12n—1 + (1 — wp—1)z,) ||
+(1 = ay)(1 - ﬁnT)H[I = Ont1(A = yf)l(wnrpn + (1 — wy)Tny1)

—[I =6 (A= y)(wn—12pn-1 + (1 = wnfl)fn)H

+(1 = an)plBn = Bn-1[| BT Pe[I — 0n(A = v f)(wn—12n-1 + (1 — wn—1)zn) ||
ank(l = rp)||Xns1 — Tnll + ankra—i||zn — Tn-1l|

+Hon — an—1||¢(rn-12n—1 + (1 = rn—1)z) ||

+om — an—1|[|(I = pBn-1B)TPcll — 6,(A — v f)(wn-12n—1 4+ (1 — wp—1)zy) ||
+(1 —an)(1l = B,7) *

Ont1 ('Yf(wnxn + (1 —wp)xngr) = vf(Wp—12p—1 + (1 — wnfl)mn))

+(I — 01 A) (WnZpn + (1 — Wp)Zpt1 — Wn1Tp—1 — (1 — Wp—1)2p)
F(0ns1 = 0n)vf (Wn—12p—1 + (L —wn_1)n)

+(0nt1 = 0n) A(wn—1Tn—1 + (1 — wp_1)zn)

+(1 = an)plBn = Baa||BTPe[I = 6n(A = vf)|(wn—12n—1 + (1 = wp—1)z)|

J
4]
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10 S. Suwansoontorn et al.

< ank(l = )|t — znll + ankra—1||lz, — zn_1|
Flam — an1l[|@(rn—12n—1 + (1 = rn_1)an)||
+lam = an-1|[|[(I = pBn-1B)TPc(l — 6p(A = vf))(wn-12n-1 + (1 — wp—1)zn)|
+(1 = an)(1 = Ba7) (Bns17plwn@n + (1= wa)Tns1 = wor2n1 = (1= wo1)an]
+(1 = 1) wn@n + (1 = wn)Tnt1 — Wn—1Zn—1 — (1 — wp—1)@n||
Font1 = |17 f (Wn—1Zn—1 + (1 — wn_1)n)||
01 = Bl A(wa10m1 + (1= wasr)a))
(1 = )il — Bu 1 IIBTPEIT = 60(A = 7 F))(wn 1201 + (1= wa_1)z0)
< ank(l =)zt — @all + ankrp—i1lln — 2ol
Flom — an1l[|@(rn—12n—1 + (1 = rn_1)an)||
+lam = an-1l[|[(I = pBu-1B)TPc(l — 6, (A = vf)(Wn-12n-1 + (1 — wp—1)zn)||
(1 = an)(1 = Bar)( = Buga(7 — 70))
lwnzn + (1 — wp)Tnt1 — Wno1Zn—1 — (1 — wp—1)n]|
+(1 = an)(1 = BuT)[bn+1 = Onll[7f (wn—12n—1 + (1 — wn—1)zs)|
+(1 = an)(1 = Ba)[6n+1 — Onl[| Alwn—12n—1 + (1 — wp—1)zn) ||
(1 = @)lBn — B s || BTPelT = 60(A = ) (101201 + (1 = w_1)z0)
= apk(l = 1)[[Tn+1 — Tl + ankrnp_1flzn — Ty
Flam = an—1l[|@(rn—12n—1 + (1 = rn_1)an)||
+lam = an-1|[|[(I = pBu—1B)TPc(l — 6p(A = vf))(wn-12n-1 + (1 — wp—1)zn)||
+(1 = an)(1 = Bu7)(L = nt1(F = ¥ 11 — wn ) (@nt1 — @0) + Wp—1(Tn — Tn—1)||
+(1 = an)(1 = BaT)|6n+1 — Oulll7f (Wn—1Zn—1 + (1 — wp—1)2y)|
+(1 = an)(1 = BaT)[bn+1 — Onl[| Alwn—12n—1 + (1 — wp—1)zn)||
+(1 = an)ulBn = Bual|BTPc[I = 60 (A = v /) (wn—12n—1 + (1 = wp_1)zn)|
< ank(l =)z — 2all + ankrp—i1lln — zn-1|

Han — an1ll|@(rn—17n—1+ (1 = rp_1)z) ||
o — an1|[[(I = pBp-1B)TPcll — 60 (A — v f)l(Wn—12n-1 4+ (1 — wp_1)2y) ||

+(1 = an)(1 = Ba7)(1 = 6nt1 (¥ = 70)) (1 — wn)[Tnt1 — zn|

+(1 = an)(1 = BaT)(1 = 6nt1 (¥ — VP))Wn—1lTn — Tn—1]

+(1 = ap)(1 = Bu7)[0nt1 — Snlllvf(Wn—1Zn—1 + (1 — wp_1)zs)|l

+(1 = an)(1 = BaT)[bn+1 — Onl[| A(wn—12n—1 + (1 — wp—1)zn)||

(1 = )il B — Ba-s IBTPOT = 60(A = 7 F))(wn101 + (1 = wa 1))

It implies that, for each n > 1,

[Zn+1 — @nll
< ankrn—1+ (1 —an)(1 = Bu7)(1 = 61 (¥ — 7p))Wn—1
T l—ank(l—rn) = (1 —an)(1 = Bu)(1 = dnt1 (¥ —v0)) (1 — wy)
+ |l — an—1[l|p(rn—12n—1 4+ (1 — rn_1)zs)|
L—ank(l =) = (1= an)(1 = Ba7)(1 = ng1(F — 7)) (1 — wn)

|Zn — 21|
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loty, — a1 |[|(I = pBn_1B)T Pl — 6,(A —vf)|(wn_12n—1 + (1 —wn_1)zn)||
L —ank(l—=7,) = (1= an)(1 = BuT)(1 = 61 (F — 7)) (1 — wy)

(I —an)(1 = Bum)[6n+1 = Onlllvf (wn—12Zp—1+ (1 — wn—1)zy)||
1 —apk(l—ry) = (1= ap)(1 = Bu7)(L = 6ns1 (¥ — v0)) (1 — wn)

(1 = an)(L = Bu7)|0n+1 — On| | A(wn—1Zn—1 + (1 — wn_1)z) ||
L—ank(l—7r) — (1 —an)(l = Bu7)(L = 6nt1(F — vp)) (1 — wn)
(1 — an)plBn = Br-1[| BT Pc[I — 6n(A — )| (wn—12n—1 + (1 — wn—1)zn)||

L —apk(l—=71,) = (1 = an)(l = Bnm)(1 = n1 (¥ — v0)) (1 — wy) '

+

Then, we have

[Zn+1 — @nll
<[1- nk(ry —1n_1) + (1 — an)(1 = BuT)(1 — py 1 (F — 7)) (W, — wp—1) + &5
ankry, + (1 - an)( /BnT)( - n+1(:7 - Wp))wn + gn

#[|zn — Tp_ |
+ lan — an—1||¢(rn—1Zn—1 + (1 = rn—1)2s) ||
ankry + (1 —an)(1 = Ba7)(1 = 6n 41 (Y — vp))wn + &n
|O‘n —ana|[[({ = pBr—1B) TPl — 6n(A — v)l(wn—12n—1 + (1 — wp_1)zs)|
ankrn + (1 —an)(1 = Ba7)(1 = 6n1 (Y — vp))wn + &n
(1 —on)(d = Bu7)(L = 6n1 (¥ — 7p))wn
ankry 4+ (1 = an)(1 = Bu7)(1 = 0pt1(¥ — vp))wn + &
% |5n+1 - 671/H|’Yf(wn—1xn—l + (1 - wn—l)xn)H
(1= 0n41(¥ — vp))wn
(1= ) (1 = Bu)(1 = uia(5 — v0)) 0
ankry + (1 —an)(1 = Bu7)(1 = 6n 41 (Y — vp))wn + &n

*<|6n+1 — Oul | A(wn—12n_1 + (1= wm)xn)n)

(1= 0pt1(Y —vp))wn
(1 —ap)(1 = Bu7)(1 = 0ni1(§ — yp))wn
ankrp + (1 —an)(1 = Ba7)(1 = 6n 1 (Y — vp))wn + &n
o 1180 = B [IBTPell — 6n(A = 7 )] (Wn12n-1 + (1 = wp—1)a,)|
(1= Bn7)(1 = 0py1(¥ — vp))wn ’

where &, is defined by 1 — ak — (1 — ) (1 — Bn7)(1 — 61 (5§ — vp)). This yields that,
for n > 1,

i1 — znll
< (1 _ a”k(rn —rp-1) + (1= O‘N)(l — BT )( n+1(7 ’YP))(wn - wnfl) +§n>

ankry, + (1 —an)(1 = BuT)(1 = g1 (¥ — vp))wn + &n

*”xn - xn—lH
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+ ‘an — Qp— 1‘
ankry + (1 —ap)(1 = Bom)(1 = 8py1 (7 — vp))wn + gn
(1 —an)(l = Bu7)(1 = 611 (F — vp))wn . [0n41 — 0p| Mo
ankry, + (1 - O‘n)( — BnT )( - n+1(7 'Yp))wn +&n (1 - 5n+1(’7 - 'W’))wn

(1= an)(1 = Bur) (1 = duir (5 = 9p))wn *< 041 = 6| M )

ankrn + (L —an)(1 = Ba7)(1 = 6n 41 (Y — vp))wn + &n (1= 6nt1(y —vp))wn

(1 — ) (1 = Bu7)(1 = dns1 (¥ — vp))wnn
ankry + (1 —ap)(1 = Bum)(1 = 6ny1 (7 — vp))wn + &n

] Bn — Brn—1|My
(1= Bn)(1 = dppr (¥ = vp))wn )’

where M; = sup,,>g {||¢(rn,1xn,1 + (1 =rp—1)z)| + |(I = pBr-1B)TPc[I — 0,(A —

Y1201 + (1= wa)an)| b Mz = [f (wnoaza-1 + (1= wan)an)ll, My =
|A(wp—12n—1 + (1 — wp_1)xy,)|| and My = [|BTPc[I — 0,(A — v)(wp—12pn—1 + (1 —
Wn—1)Zy)||. From (C1)-(C3) and the boundedness of {x,, }, {yn}, {Azn}, {Bzn}, {¢(zn)}
and {f(x,)}. By Lemma 2.9, then we have

Jim [z 0 —znl| = 0. (3.3)
Later, we need to show that lim,_, ||, — Tx,|| = 0. For each n € N, we obtain
|xn — Tyl
< Nlan — Tngall + [[#na1 — TPo[I = Spp1 (A — ) (wnan + (1 — wn) i) ||
+||T Pl = 6ns1 (A = A )] (wnzy + (1 = wy)Tny1) — Tan|
< on = @ngall + [lend(rnzn + 1 = ) 2n41) + (1= an)(I = pBnB)zn
—TPell —b6pi1(A—vH)(wpzy + (1 — wn)an)H
+||PelI = 6ns1(A = v )N (wnmy + (1 — wn)Tns1) — Poll — pg1 (A — 7 f)]zn|
< o = @nsall + andazn + (1= ra)zns)
(1 = an) (T — B BYTPell — S (A — 7)) (wnn + (1 — wn)n 1)
~TPell = S (A= )} (wnn + (L= wa)ans)|
+H ([ = Ons1(A =y ) (wnzn + (1 = wp)Tng1) — [ — g1 (A — Vf)]an
< lon = 2ol + |[@n@(rnwn + (1= ra)znis)

+( = pBuB)TPo[I = bny1(A =7 f)(wn@n + (1 = wn)Tni1)
—an(I = pfnB)TPoll = py1(A = 7)) (wntn + (1 — wn)Tpi1)

TPoll = bua(A =Dy + (L= w)wn) |

+||5n+1 (’Yf(wnxn + (]- - wn)anrl) - ’fon)
+(1 - 5n+1:}/) (wnxn + (1 - wn)xn-i-l - an)H

Bangmod Int. J. Math. & Comp. Sci., 2025
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IN

IN

IN

IN

an®(rnTn + (1 —1p)Tnt1)

—uBn BT Pl — 6n41(A — ) (wnrn + (1 — wn)Tnt1)

~an(I = uBa BYTPll = 8n41(A = )] (wnn + (1 = wa)ansa)|
Fons1l7f (wWnzn + (1 — wn)2pi1) — v nl|

+(1 = S 1Y) [[wnrn + (1 — W) T — 2|

[0 = Tn1ll = BulluBTPe[l = dng1 (A = v )] (wnzy + (1 = wn)zn41)|
+anH¢(rnxn + (1 —7n)Znt1)

—(I = pBnB)TPelI = 61 (A — v ) (wnan + (1 — wp)@pi)||
+0n17pll (Wnxp + (1 — wn)Tnt1) — ol

+(1 = Ops 1Y) [ wn@n + (1 — wp)Tns1 — 2|

[0 = Zn1ll = BulluBT Pe[l = dny1 (A = v )l (wnzy + (1 — wn)Tn1) |
+an||¢(rnxn + (1 =rp)Tnir)

—(I = pBuB)TPc[l — 6ny1(A — v )| (wnwy + (1 — wn)xn-i-l)H

+(1 = (7 = 7P)bn+1) [wnzn + (1 — wn)2pi1 —

[#n = Tnall = BulluBTPe[l = dnga (A = v )| (wn@n + (1 = wn)zn 41|
—l—oanqS(rnxn + (1= rp)zner)

—(I = uBpB)TPell — 6ni1 (A — v )| (wnzy + (1 — wy)@ng1) |

+(1 = (7 =70)0n+1)(1 — wn)[[Zns1 — 2nl].

lon = @nsall + |

By (C3)-(C4), limy,, 00 || Tn+1 — x|| = 0 and it follows that

lim |2, — Tz,| = 0. (3.4)

n—

o

Step 3. First, limsup,,_, . (unp—2a*,vf(x*)—Az*) < 0is proved. Choose a subsequence
{zp,} of {z,} such that

limsup(z, —z*,vf(2") — Az™) = lim (x,, — 2", vf(z*) — Az™).

n—00 1—00

The boundedness of {x,,} implies the existences of a subsequence {Imj} of {z,,} and

a point £ € H such that {xmj} converges weakly to . We may assume without loss of

generality that lim; oo (zp,, w) = (Z,w), w € H. Assume & # T(Z). By limy, o0 ||2n —
Tz,| =0 with F(T) # () guarantee that

liminf ||z, — & < liminf ||z, —T(&)]
1— 00 71— 00
= liminf ||z, = T(2n,) + T(2n,) - T(2)]|

11—

liminf |T(z,,) — T(2)]]
71— 00

liminf ||z, — 2,
71— 00

IN
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which is a contradiction. Therefore & € F(T'). From z* € VI(F(T), A —~f), we find

lim sup(en — %, 7f(2") — Az®) = lim (n, — %, 7f(z") — Az”)
n—00 1—00
= (&—a",7f(a") — Az")
< 0.

Setting u,, = [I — §,(A — vf)]z, and by (C3)-(C4), we notice that
[un = @nll < 0n (A=~ f)Il = 0.
Hence,we get
lim sup(u,, —z*,vf(z*) — Az*) < 0. (3.5)

n—oo

Second, the proof of limsup,, , .. (x* — 241, Bz*) < 01is shown. From lim, o ||Zn41 —
Zn|| = 0 guarantees the existences of a subsequence {z,, +1} of {z,,} and a point z € H
such that lim sup,,_, (" —2p41, Bx™) = limg 00 (" =2, +1, Bx*) and limy o0 (T, , w) =
limy o0 (Tny+1, w) = (T, w), w € H. By the same discussion as in the proof of & € F(T),
we have T € F(T). Let y be an arbitary fixed point in F(T). Then, it follows from
T : C — C is a nonexpansive mappings with F(T) # ), A : C — H be a strongly positive
linear bounded operator and f : C'— H be a contraction that, for all n € N. From (3.1)

[zn =yl = ITPcun —TPcyl
< lun =yl (3.6)
By (C3)-(C4), it follows that
[un =yl = NI = 0u(A=~vf)lzn -yl
< lzn =yl + 0nll(A =7 f)anll
< lzn =yl (3.7)

Using (3.6) and (3.7)
lun =ylI* = Il = 0u(A = ~vf)lzn -yl
6u (1 (20) = Ay) + (I = 6, A) (@0 — )|

< (=692 [len = ylI” + 26, (v f (2n) — Ay, un — )

< (1=26,7 4 63 wn — yll* + 26070 ll20 — ylllun — yll
+26n (v f(y) — Ay, un — y)

< (1=20,7 + 6577z — yl?

+20,7vpllzn — ylI* + 26, (1 f (y) — Ay, un — y)
= [1=26,(% — vo)lllzn — ylI* + 627 w0 — Yl + 26, (v f (y) — Ay, un — y),
which implies that
0 < (Jan =yl = lun = 9l1?) = 200(3 = 70) 2 = ylI* + 825%wn —
= (llen =yl + llun =yl Uzn = yll = llun = yll) = 200(F = v0) 120 — ylI?
6.7 | — ylI? + 260 (v (y) — Ay, un — y)
M5Hxn - un” - 25n(:7 - ’Y,O)Hﬂ?n - y||2 + 52’72”%‘” - y||2 + 25n<7f(y) — Ay, up — y>a

IN
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where M5 = sup{|lz, — y|| + |lun — y|| : n € N} < oo, for every n € N. By the weak
convergence of {u,,} to Z € F(T), lim,—, o ||un — 2,|| = 0 and (C3)-(C4), we get ((vf —
Ay, z —y) < 0 for all y € F(T). A mapping A be a strongly positive linear bounded
operator and f be a contraction ensures ((yf — A)y,z —y) < 0 for all y € F(T), that is,
z2eVI(F(T),A—~f). Thus z* e VI(VI(F(T),A—~f),B), we have

limsup(z* — z,, Bx*) = limsup(z* — x,,, Bz™)
n— 00 1—00
= (z* —&,Bz")
< 0. (3.8)

From (3.8), we notice that

limsup{z* — y,, Bz*) < 0. (3.9)

n—oo

Thus, limsup,, . (r, — 2%, ¢(2*) — 2*) < 0 is proved. Choose a subsequence {z,,} of
{z,} such that

limsup(z, — 2%, ¢(x") — 2*) = lim (z,, — 2", ¢(2") — ¥).
n—00 g—o0

The boundedness of {x,,} implies the existences of a subsequence {x,, } of {z, } and
a point Z € H such that {xngh} converges weakly to Z. By lim, o ||Znt1 — Znll = 0,
we have limhﬁoo@cnghﬂ, w) = (Z,w), w € H. We may assume without loss of generality
that lim; o0 (T, w) = (T,w), w € H. Assume & # T'(Z). By lim, o0 ||, — Tz, = 0
with F(T) # 0, it guarantees that

liminf |2y, — 2| < liminf |z, —T()]

liminf ||z, — T(2n,) + T(zn,) — T(2)]

g—oo

lim inf 1T (zn,) — T(2)]

lim inf ||z, — Z||.
g—00

IN

This is a contradiction, that is, & € F(T). From z* € VI(VI(VI(F(T), A—~f),B), 1—¢),
we find

limsup(z, — 2%, ¢(z") —2%) = lim (v,, — 2", ¢(z") — %)
n—o0 g—roe
= (z—2",¢(z") —2)
< o (3.10)

Bangmod Int. J. Math. & Comp. Sci., 2025
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Step 4. Finally, we prove lim,_, ||z, — z*|| = 0. By Lemma 2.8, we compute
[Zn1 — 2|

= |land(rnzn + (1 = rp)xnt1) + (1 — an)( — pfnB)z, — x*”Q
||an¢(rnxn + (1 - rn)anrl)
+(1 = an)(I = pBnB)TPe[l — 0pi1(A = v)l(wnry + (1 — wy)Tny1) — x*HQ

= ’ Qo (QS(Tnxn + (L= rn)eni1) - :E*>

HU= )0 = 1B B) (TPl = S (A= 1Dz + (1~ wi)nyn) — )|

< ozi||¢(rnxn + (1 - rn)xn+1) - x*HZ
+(1 = an)?|[(I = B B)TP[I = 6nya (A — )l (wnn + (1 — wn)wn41) — 2|
+2a,(1 — an)<¢>(rnmn + (1 —rp)epyr) — ¥,
(I - ,UﬂnB)TPC[I - 5n+1(A - 'Yf)](wnxn + (1 - wn)xn-i-l) - 33*>
< O‘i||¢(rnmn + (1 =7p)Tng1) — x*HQ
+(1 - an)QH(I — uBnB)T Pl = 0pi1(A = yf)l(wnrpn + (1 — wy)Tny1)
—(I = pBnB)TPo[l = 6 41(A =7 f)lz*|?
+2a,(1 — an)<¢(rnzn + (1 =rp)eper) — oz,
(I = uBuBYTPoll = Sps1 (A = Y )] (wan + (1 = wa)wns1) = a*)
+2a,(1 — an)<¢x* -z,
(I = 1B BYTPell = Sni1(A = 1)) (wan + (1 = w)wass) — 2*)
< (1- O‘n)2‘|(wn$n + (1 = wn)Tpi1) — 33*”2
+20, (1 = an)||¢(rnzn + (1 — 1) Tng1) — ¢z
#|(I — uBnB)T Po[l — dpy1(A — v )(wnan + (1 —wn)Tni1) — 2| + 10
< (1= an)wn(en — %) + (1 = wn)(znsr — )P
+2kan, (1 — ap)||rntn + (1 — mn)Tne1 — 27|
* (I - N’ﬂnB)TPC[I - 6n+1(A - ’Yf)](wnxn + (1 - wn)anrl)
(I — BaB)T POl — Snin(A— 2 )| 1
< (1- O‘n)2{w721“$n - $*||2 + 2w (1 — wp) ||z — 2" |041 — 27
+(1 = wn)?[[ens1 — $*||2} + 2kan (1 — ap){rnllzn — || + (1 = ro)[|pg1 — 2" ||}
#(1 = But)(1 = (7 = v0)ons){lwnn + (1 — wn)wps1 — ||} + nn
< (T—an)?qwpllen — 2|1 + wa (1= wp){[lzn — 2> + 2041 — %1%}

+(1 = wa) g — 2"}

+2kan (1 — ) (1 = Bn7)(1 = (F = vp)Snti){rallan — 27|
+(1 - rn)Hanrl - x*||} : {wnllwn + x*H + (1 - w’ﬂ)”anrl - CE*H} + n
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<

IA

IA

IN

IN

AN

(1- an)2{wil\fﬂn = 2P+ wa (1 = wa)llzn — 2 + wa (1 = wn) |41 — 272

(1= w2 lenss — 22}

+2kan(1 = an)(1 = Ba7)(1 = (7 = 1p)bns1){ rawonn — o

+(1 = rp)wn|znt1 — 2| [lzn — 2|+ ro (1 — wp)|l2n — 2" ||[|2n41 — 27|

+(1 = ra)(1 = wn)[@nss = 2"} + 10

(1= )P {(w2 + wn — w2)ln — 22+ (1 wa)(wn + 1 = wp) nss — 2|}
+2kern (1 = o) (1 = Bu7) (1 = (3 = 7p)0ns1 ) rnwnl|z, — 2|2

+2kan (1 = an)(1 = Bu7)(1 = (7 = 70)bn41) (1 = 1) (1 — wp)[[ 201 — 27|
+2kan (1 — an)(1 = Ba7)(1 — (¥ — 7p)0n+1)

#((L=rp)wn +71n(1— wp))[[Tnt1 — 2*[[[|[2n — 2| + 12

(1- O‘n>2wn||xn - aj*HQ +(1- an)Q(l —wp)[|[Tn41 — x*”Q

+2kan (1 — an)(1 = But)(1 = (¥ = 7p)0n+1)Tnwn||Tn — x*”Q

+2kan (1 = an)(1 = Bu7) (1= (7 = 70)bn41) (1 = ) (1 = wy)[[2n 1 — 27|
Fhan (1 —an)(1 = Bum)(1 = (F = 70)0ns1) (1 = mp)wp + 1 (1 — wy))

#{|2nt1 — 33*”2 + ||lzn — x*”Q} + M

(1= an)?wpllen — 2|* + (1 = an)*(1 — wn)llznrs — 27|

Fhan (1 —an)(1 = Bum)(1 = (F = 7P)0n11) (2rnwy + (1 — 1) wy + 1o (1 — wy))
#|lan — 2|12 + kan(l = an)(1 = Bo7)(1 = (¥ = 79)0n41)

#(2(1 =) (L —wn) + (1 = rp)wn + o (1 — wp))[|2n41 — I*”z + T

(1 = anPwnllzn — 21 + (1 = (1 wo)esr — o]

than (1= an)(1 = o) (1 = (F = 4p)0nt1) (wn + 1) [l — 2|

Fhan (1 — an)(1 = BaT)(1 = (F = 70)0n+1)(2 — T — W) [|Tp41 — m*HQ +n

{(1 = an)?wy + kan (1 = an)(1 = Bar) (1 = (7 = 1p)0ns1) (wy +70) Hlzn — ||
+{(1 - O‘n)z(l —wy) +kan (1 —an)(1 = Bu7)(1 = (F = vp)0n11)(2 — 7n — wy) }
lnss = 22 + 1,

where 1, = @2 ||¢(rpzn+ (1—7p)2ns1) — 2|2 + 20, (1 fan)<¢x* —a*, (I —pB,B)TPc[l —
Ont1(A =) (wnzpn + (1 = wy)2n41) — ) which implies that

AN

IN

41 — 2%
(1— an)an + ko‘n(l - an)(l — Bn7)(1 = (7 — 'Yp)én-&-l)(wn +7n)
1={(1 = an)?(1 = wn) + kan(l — an)(1 = Bum)(1 = (¥ = ¥p)0n+1)(2 — ryy — wn)}

*ln — 272

+

Mn
I—{(1 = an)*(1 —wy) + kan(l — ap)(1 = Bum)(1 = (¥ = 7p)0n41)(2 — 70 — wy) }
(1 = an)?wp + kan (1 — an) (1 = Bu7)(1 = (3 = 7p)dnt1) (wn +14)
1-— (1 - an)Q(l - wn) - kan(l - an)(l - ﬁ’rﬂ-)(l - (7 - ,yp)67l+1)(2 —Tn — ’U)n)
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*||xy, *x*”2
Mn
1- (1 - an)Q(l - wn) - kan(l - an)(l - ﬁnT)(l - (77 - ’79)5714-1)(2 —Tn — wn)

(1 - O‘n)2wn + ko‘n(l — an)(l - BnT)(l - (7 - 79)5n+1)(wn + Tn)

+

_x2
S (1 - an)2wn + kan(l - an)(l - ﬁnT)(l - (/7 - 7p)6n+1)(wn + rn) + <n || ||
n

- (1 — an)?wp + kan (1 —an)(1 = Bum)(1 = (¥ = ¥p)0n+1)(wWn +70) + (o
< 1— an(2 - an) - 2kan(1 - an)(l - BnT)(l B (’7 B Vp)(anrl)
o (1 - an)2wn + kan(l - O‘n)(l - /BnT)(l - (:Y - 'Yp)én-&-l)(wn + Tn) +Cn

*llan — ¥

+ n

(1 = an)?wp + kay (1 — an)(1 = Bu7) (L — (¥ = 7p)0nt1) (wWn +70) + Cn

where (, = a, (2 — ay) — 2kay, (1 — ) (1 = Bo7)(1 — (7 = ¥p)0n+1). Applying Lemma 2.9,
we can conclude that x,, — 2*. This completes the proof. [ |

4. AN EXAMPLE

Next, the following example shows that all conditions of Theorem 3.1 are satisfied.

Example 4.1. For instance, let a,, = %, Bn = —n and d,, n. We will show that the
condition (C1) is achieves. Then, clearly, the sequences {5n}
1
S0 10, =202 15, =
and
27:)10:1|5”+1 - 5n| = n ‘ +1) %
1 & 1 1 1 1
< |1ﬁ*3*| I3z — 33l T35 =32l T

wl

The sequence {d,,} satisfies the condition (C1).
Later, we will show that the condition (C2) is achieved. We compute

Y021 Bns1 — Bl

oo 1 _ 1
ZJ71:1'2(77,Jr1) 2n

I IA

1 1 1 1 1 1

21— 2sl T les — 2l tlzs — 2l
5.

The sequence {3, } satisfies the condition (C2).

Next, we will show that the condition (C3) is achieved. We compute

E',OLO:1|0‘71,—‘,-1_Oén| = Xi%o=1|1n—1i-1 :%|1 L L
< lp—al+lz —sl+lg—al+...
=1
and
lim a, = lim — =0,
n—oo n—oo n
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The sequence {«;, } satisfies the condition (C3).
Finally, we will show that the condition (C4) is achieved.

1 < 1 q 1 < 1
— < — and — < —.
3n 2n 2n n

Corollary 4.2. Let H be a real Hilbert space, C be a closed convex subset of H. Let
A :C — H be an inverse-strongly monotone. Let T : C'— C' be a nonexpansive mapping.
Let B : C — C be a B-strongly monotone and L-Lipschitz continuous. Suppose {x,} is a
sequence generated by the following algorithm, for any x¢ € C,

{ 2n =TI = dp1A) (Wnxy + (1 — wp)Tpt1), (4.1)
Tnt1 = (1 —apn)(I — pBnB)z,, ¥Yn >0, ’
{an}, {0} C [0,1]. If p € (0,%@) is used and if {Bn} C (0,1] satisfy the following
conditions:

(C1): 3221 10n41 — Opn| < 00, 22,6, = 00;

(C2): E321|Bn+1 — Bnl < 005

(C3): 22 1 |ant1 — an| < 00, limy, 00 ay = 0;

(C4): 0n < Bn and Bn < o
Then {x,} converges strongly to x* € VI(F(T), A), which is the unique solution of the
variational inequality:

Find z* € VI(F(T), A) such that (Bx*,x —z*) >0, Ve € VI(F(T),A). (4.2)

Proof. Setting P as an identity mapping and f,¢ = 0 in Theorem 3.1, we can obtain
the desired conclusion immediately. [ |

Remark 4.3. Corollary 4.2 generalizes and improves the results of Iiduka [8].

Corollary 4.4. Let H be a real Hilbert space, C be a closed convex subset of H. Let
A:C — H be a strongly positive linear bounded operator, f : C — H be a p-contraction,
v be a positive real number such that %71 << % where 7 s a positive constant number
and p € [0,1). Let T : C' — C be a nonexpansive mapping. Suppose {xn} is a sequence
generated by the following algorithm xo € C' arbitrarily

Zn = TPC[I - 5n+1(A - ,Yf)](wnxn + (1 - wn)anrl)a
Tpp1 = Qn(TnZn + (1 = 70)Tns1) + (1 = an)(I — pBnB)zn, Yn >0,

where {a, }, {0,} C [0,1]. If u € (0, i—é) is used and if {Bn} C (0,1] satisfy the following
conditions:

(C1): 22 1|0n+1 — 0n| < 00, £ 18, = 00;

(CQ) Z%O:l|ﬂn+1 - ﬁn‘ <05

(C3): 2% 1|41 — ayn| < 00, limy, 00 iy = 0;

(C4): 0n < B and B, < .
Then {x,} converges strongly to x* € Q, which is the unique solution of the variational
inequality:

Find x* € Q such that (Bx*,x — z*) > 0, Va € Q. (4.4)

(4.3)

Proof. Putting ¢ as an identity mapping in Theorem 3.1, we can obtain the desired
conclusion immediately. [ |

Remark 4.5. Corollary 4.4 generalizes and improves the results of Marino and Xu [17].
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