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Abstract The purpose of this paper is to introduce the class of interpolative enriched cyclic Kannan

contraction mappings defined on an Banach space and to prove the existence and uniqueness of fixed point

of the such mappings. An example is presented to support the concept introduced herein. Moreover, an

application of the main result to solve nonlinear integral equations is also given. Our result extend and

generalize various results in the existing literature.
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2 M. Abbas, R. Anjum, S. Riasat

1. Introduction and Preliminaries

Let (X, d) be any metric space. A mapping T : X → X is called contraction mapping
if there exists a constant a ∈ [0, 1) such that for all x, y ∈ X, we have

d(Tx, Ty) ≤ ad(x, y). (1.1)

One of the most important results used in metric fixed point theory is the well known
Banach contraction principle which states that any contraction mapping on a complete
metric space (X, d) has a unique fixed point. Clearly, contraction is always continuous
on X. It is a matter of great interest to study contractive conditions which do not
imply the continuity of T on X. Kannan [26] in 1968 proved a fixed point theorem for
Kannan contraction mapping that do not need be a continuous. Recall that, a mapping
T : X → X is called Kannan contraction mapping if there exists a constant a ∈ [0, 1

2 )
such that for all x, y ∈ X, we have

d(Tx, Ty) ≤ a[d(x, Tx) + d(y, Ty)]. (1.2)

Subsequently, it initiated the study of contractive type conditions that do not imply the
continuity of T . For more results in this direction, we refer to [4–7, 14, 15, 24, 27, 32, 35–
37] and references therein.

Recently, Karapainar in [27] extended the class of Kannan contraction mappings by
introducing the class of interpolative Kannan type contraction mappings.

A mapping T : X → X is called an interpolative Kannan type contraction [27] if there
exist a ∈ [0, 1) and α ∈ (0, 1) such that for all x, y ∈ X \Fix(T ) = {x ∈ X : x = Tx}, we
have

d(Tx, Ty) ≤ a[d(x, Tx)]α[d(y, Ty)]1−α. (1.3)

It was proved that any interpolative Kannan type contraction mapping defined on a
complete metric space has a unique fixed point [27]. For more results in this direction,
see ([28, 29]).

It is worth mentioning that the mappings satisfying certain contractive conditions are
self mappings on their domain of definition. Rhoades [34] obtained a fixed point result

for nonself contractive type mappings, which was later modified by Ćirić [23] ( see also,
[10] ). Some interesting fixed point results have been obtained in this direction, see for
example, [8, 9, 12, 22, 25].
In 2003, Kirk et al., [30] considered a cyclic representation of the space with respect to a
discontinuous mapping and extended Banach contraction principle. Let X be a nonempty

set, p a positive integer, and T a self mapping on X. A finite collection {Sj ⊆ X : j =
1, 2, 3, . . . , p} is called a cyclic representation of X with respect to T if

(1) X =
∪p

j=1 Sj ;

(2) T (S1) ⊆ S2, . . . , T (Sp−1) ⊆ Sp, and T (Sp) ⊆ S1.

The fixed point theorem in [30] is stated as follows.

Theorem 1.1. [30] Let (X, d) be a complete metric space, p a positive integer, { S1, . . . , Sp}
a finite family of nonempty closed subsets of X, and T :

∪p
j=1 Sj →

∪p
j=1 Sj . Assume that:

(1) {Sj : j = 1, 2, 3, . . . , p} is cyclic representation of
∪p

j=1 Sj with respect to T ;
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SOLUTION OF INTEGRAL EQUATION INVOLVING INTERPOLATIVE ENRICHED 3

(2) there exists k ∈ [0, 1) such that for x ∈ Sj and y ∈ Sj+1, we have

d(Tx, Ty) ≤ kd(x, y),

where Sp+1 = S1. Then T has unique fixed point x∗ in
∩p

j=1 Sj .

Let D be a convex subset of a normed space X, λ ∈ (0, 1] and T : D → D. A mapping
Tλ : D → D given by

Tλ(x) = (1− λ)x+ λTx

is called an averaged mapping. Note that, the set of all fixed points of an averaged
mapping coincides with set of all fixed points of T.
There arises a question that, if the collection {S1, ..., Sp} of nonempty closed subsets of

a normed space (X, ∥·∥) is a cyclic representation of
∪p

j=1 Sj with respect to Tλ for some

λ and T :
∪p

j=1 Sj → X satisfies certain contractive condition. Then, whether such an
operator T possesses a fixed point or not?
This was answered in an affirmative way by Abbas et al., by proving a fixed point result

for generalized enriched cyclic contractions [1].
For more discussions on enriched contractions mappings, we refer to [2, 3, 11, 13, 16–

21, 31] and references therein.

Motivated by the idea of Abbas et al. [1] and Karapinar [27], we introduce the class
of interpolative enriched cyclic Kannan contraction mappings and prove a fixed point
result in the frame work of complete metric spaces. An example is presented to support
the result proved herein. As an application of our result, we obtain the existence and
uniqueness of the solution of a class of nonlinear integral equations involving interpolative
enriched cyclic Kannan contraction mappings .

2. Main results

In this section, we introduce the concept of interpolative enriched cyclic Kannan con-
traction mappings and obtain existence and approximation results of such mappings.
Throughout this section, {S1, . . . , Sp} denotes a finite family of nonempty closed subsets
of a normed space (X, ∥·∥), where p is some positive integer. The symbols N and R denote
the set of all natural numbers and the set of all real numbers, respectively.

Definition 2.1. A mapping T :
∪p

j=1 Sj → X is called an interpolative enriched cyclic
Kannan contraction if it satisfies the following conditions:

(1) {Sj : j = 1, 2, 3, . . . , p} is cyclic representation of
∪p

j=1 Sj with respect to Tλ.

(2) There exist b ∈ [0,∞), a ∈ [0, 1) and α ∈ (0, 1) such that for all x ∈ Sj , y ∈ Sj+1

for 1 ≤ j ≤ p,

∥b(x− y) + Tx− Ty∥ ≤ a ∥x− Tx∥α ∥y − Ty∥1−α
, (2.1)

where λ = 1
b+1 .

To highlight the constants involved in (2.1), we call interpolative enriched cyclic Kan-
nan contraction T, a (b, a, α)-interpolative enriched cyclic Kannan contraction.

We now present our main result.

Theorem 2.2. If T :
∪p

j=1 Sj → X is a (b, a, α)-interpolative enriched cyclic Kannan
contraction. Then
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4 M. Abbas, R. Anjum, S. Riasat

(1) Fix(T ) = {x∗}, for some x∗ ∈
∩p

j=1 Sj ;

(2) There exists λ ∈ (0, 1] such that an iterative scheme {xn}∞n=0, given by

xn+1 = (1− λ)xn + λTxn, n ≥ 0, (2.2)

converges to x∗ for any x0 ∈
∪p

j=1 Sj ;

Proof. By the (b, a, α)-interpolative enriched cyclic Kannan contraction condition (2.1),
we have∥∥∥∥( 1

λ
− 1

)
(x− y) + Tx− Ty

∥∥∥∥ ≤ a ∥x− Tx∥α ∥y − Ty∥1−α
,

which can be written in an equivalent form as follows:

∥Tλx− Tλy∥ ≤ a ∥x− Tλx∥α ∥y − Tλy∥1−α
. (2.3)

Let x0 ∈
∪p

j=1 Sj . Then there exists j ∈ {1, . . . , p} such that x0 ∈ Sj . As {Sj : j =

1, 2, 3, . . . , p} is a cyclic representation of
∪p

j=1 Sj with respect to Tλ, we have x1 =

Tλx0 ∈ Sj+1. From (2.3), we get

∥Tλx0 − Tλx1∥ ≤ a ∥x0 − Tλx0∥α ∥x1 − Tλx1∥1−α
,

which gives that

∥x1 − x2∥ ≤ a ∥x0 − x1∥ ,
where x2 = Tλx1. By induction, we obtain that

∥xn − xn+1∥ ≤ an ∥x0 − x1∥ .
Now, for any numbers n,m ∈ N with m > 0, we have

∥xn − xn+m∥ ≤
n+m−1∑
k=n

∥xk − xk+1∥ ≤ an
(
1− am

1− a

)
∥x1 − x0∥ . (2.4)

Since a ∈ [0, 1), the sequence {xn}∞n=0 is a Cauchy sequence in
∪p

j=1 Sj . As
∪p

j=1 Sj is

complete subspace of X, {xn}∞n=0 converges to some point x∗ ∈
∪p

j=1 Sj . By the fact

that {Sj : j = 1, 2, 3, . . . , p} is cyclic representation of
∪p

j=1 Sj with respect to Tλ, the

sequence {xn}∞n=0 has infinite number of terms in Sj for each j ∈ {1, ..., p}. Therefore
x∗ ∈

∩p
j=1 Sj . We now prove that x∗ is the fixed point of Tλ. It follows from (2.3) that

∥x∗ − Tλx
∗∥ ≤ ∥x∗ − xn+1∥+ ∥Tλx

∗ − xn+1∥
= ∥x∗ − xn+1∥+ ∥Tλx

∗ − Tλxn∥

≤ ∥x∗ − xn+1∥+ a ∥x∗ − Tλx
∗∥α ∥xn − Tλxn∥1−α

.

This gives

∥x∗ − Tλx
∗∥ ≤ ∥x∗ − xn+1∥+ a ∥x∗ − Tλx

∗∥α ∥xn − xn+1∥1−α
.

On taking limit as n → ∞, we obtain that ∥x∗ − Tλx
∗∥ = 0, and hence x∗ is the fixed

point of Tλ. To prove the uniqueness of x∗; let p∗ ∈
∩p

j=1 Sj be such that Tλp
∗ = p∗. By

(2.3), we have

∥x∗ − p∗∥ = ∥Tλx
∗ − Tλp

∗∥
≤ a ∥x∗ − Tλx

∗∥α ∥p∗ − Tλp
∗∥1−α

.

From the above inequality we have, ∥x∗ − p∗∥ = 0, that is, x∗ = p∗.
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We obtain Theorem 2.0.4 of [1] as a corollary of our result .

Corollary 2.3. [1] Let (X, ∥·∥) be a Banach space and T :
∪p

j=1 Sj → X a (b, 0, a)-
generalized enriched cyclic contraction. Then, T has a unique fixed point.

Proof. The result follows from Theorem 2.2.

If we take b = 0 in Theorem 2.2, we obtain the following result.

Corollary 2.4. Let (X, ∥·∥) be a Banach space and T :
∪p

j=1 Sj → X. Assume that:

(1) {Sj : j = 1, 2, 3, . . . , p} is cyclic representation of
∪p

j=1 Sj with respect to T,

(2) there exist a ∈ [0, 1) and α ∈ (0, 1) such that for all x ∈ Sj , y ∈ Sj+1 for 1 ≤ j ≤ p,

∥Tx− Ty∥ ≤ a ∥x− Tx∥α ∥y − Ty∥1−α
. (2.5)

If we take
∪p

j=1 Sj = X in Corollary 2.4, we obtain Theorem 2.2 of [27] in the setting
of Banach space.

Corollary 2.5. Let (X, ∥·∥) be a Banach space and T : X → X satisfies

∥Tx− Ty∥ ≤ a ∥x− Tx∥α ∥y − Ty∥1−α
,

for all x, y ∈ X such that Tx ̸= x whenever Ty ̸= y, with a ∈ [0, 1) and α ∈ (0, 1). Then
T has a unique fixed point.

We now present an example to illustrate Theorem 2.2.

Example 2.6. Let X = R2 be endowed with the usual norm. Define T : S1 ∪ S2 → R2

by

Tx =

{
(−x1, x2) if x = (x1, x2) ∈ S1

(x1,−x2) if x = (x1, x2) ∈ S2,

where

S1 = {(x, 0); x ∈ R} and S2 = {(0, x); x ∈ R}.
If b = 1, then λ = 1

2 and we have

T 1
2
x =

{
(0, x2) if x = (x1, x2) ∈ S1,

(x1, 0) if x = (x1, x2) ∈ S2.

It is easy to check that {S1, S2} is cyclic representation of S1 ∪ S2 with respect T 1
2
. Note

that, T is

(
1, 1

3 ,
1
2

)
-interpolative enriched cyclic Kanna contraction. Following arguments

similar to those given in the proof of Theorem 2.2, we observe that (2.1) is equivalent to
(2.3) which becomes∥∥∥T 1

2
x− T 1

2
y
∥∥∥ ≤ 1

3

∥∥∥x− T 1
2
x
∥∥∥ 1

2
∥∥∥y − T 1

2
y
∥∥∥ 1

2

.

Indeed, for any x ∈ S1 and y ∈ S2, we have

∥(0, 0)− (0, 0)∥ ≤ 1

3

(
∥(x1, 0)∥

1
2 (∥(0, y2)∥

1
2

)
0 ≤ 1

3
|x1|

1
2 |y2|

1
2 .
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So T satisfies all the conditions of Theorem 2.2. Moreover, x∗ = (0, 0) ∈ S1 ∩ S2 is the
fixed point of T.

3. Application

In this section, we apply Theorem 2.2 to study the existence and uniqueness of solution
of nonlinear integral equations. We consider the nonlinear integral equation given by

u(t) =

∫ ϑ

0

G(t, s)f(s, u(s))ds; t ∈ [0, ϑ], (3.1)

where ϑ > 0, f : [0, ϑ]× R → R and G : [0, ϑ]× [0, ϑ] → [0,∞) are continuous functions.
Let X = C([0, ϑ]) be a set of real continuous functions defined on [0, ϑ] and d : X×X → R
be defined by

d∞(f, g) = max
t∈[0,ϑ]

|f(t)− g(t)|, f, g ∈ X. (3.2)

It is known that (X, d∞) is a complete metric space. Let g, h ∈ X and α0, β0 ∈ R be such
that

α0 ≤ g(t) ≤ h(t) ≤ β0, t ∈ [0, ϑ]. (3.3)

Suppose that for all t ∈ [0, ϑ], u ∈ C([0, ϑ]) and λ ∈ (0, 1], we have

g(t) ≤ λ

∫ ϑ

0

G(t, s)f(s, h(s))ds+ (1− λ)u(s), (3.4)

and

h(t) ≥ λ

∫ ϑ

0

G(t, s)f(s, g(s))ds+ (1− λ)u(s). (3.5)

Moreover, for each s ∈ [0, ϑ],the mapping f(s, ·) is a non-increasing function, that is,

for all x, y ∈ R, with x ≥ y, we have f(s, x) ≤ f(s, y), for each s ∈ [0, ϑ]. (3.6)

Also,

sup
t∈[0,ϑ]

∫ ϑ

0

G(t, s)ds ≤ 1. (3.7)

Finally, suppose that, for λ ∈ (0, 1], a ∈ [0, 1), α ∈ (0, 1), and for all s ∈ [0, ϑ], x, y ∈ R
with (x ≤ β0 and y ≥ α0) or (x ≥ α0 and y ≤ β0), we have

|f(s, x)− f(s, y)| ≤ a

λ

(
|x− Tx|α|y − Ty|1−α − (1− λ)(x− y)

)
. (3.8)

Let us consider the set

C =: {u ∈ C([0, ϑ]) : g(t) ≤ u(t) ≤ h(t); t ∈ [0, ϑ]}. (3.9)

We have the following result.

Theorem 3.1. Under the assumption (3.3-3.9), the nonlinear integral equation (3.1) has
a unique solution u∗ ∈ C.
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Proof. Define Ah and Ag by

Ah = {u ∈ X : u(s) ≤ h(s), ∀s ∈ [0, ϑ]}
Ag = {u ∈ X : u(s) ≥ g(s), ∀s ∈ [0, ϑ]}

which are the closed subsets of X. Define the mapping T : Ah ∪Ag → X by

Tu(t) =

∫ ϑ

0

G(t, s)f(s, u(s))ds; t ∈ [0, ϑ].

For λ ∈ (0, 1], we have

Tλu(t) = λ

∫ ϑ

0

G(t, s)f(s, u(s))ds+ (1− λ)u(t); t ∈ [0, ϑ].

Let u ∈ Ah. By using (3.6), we have

G(t, s)f(t, u(s)) ≥ G(t, s)f(t, h(s)), ∀t, s ∈ [0, ϑ].

It follows from (3.4) that

λ

∫ ϑ

0

G(t, s)f(t, u(s))ds+ (1− λ)u(t) ≥ λ

∫ ϑ

0

G(t, s)f(t, h(s))ds+ (1− λ)u(t)

≥ g(t).

Thus, Tλ(u) ≥ g and we obtain that

Tλ(Ah) ⊆ Ag.

Similarly, we have

Tλ(Ag) ⊆ Ah.

By conditions (3.7) and (3.8), we have

|Tλu− Tλv| ≤ λ

∫ ϑ

0

G(t, s)

(
|f(s, u(s))− f(t, v(s))|

+ (1− λ)(u(s)− v(s))

)
ds

≤ a

∫ ϑ

0

G(t, s)|u− Tu|α|v − Tv|1−αds,

max
t∈[0,ϑ]

|Tλu(t)− Tλv(t)| ≤ a

(
max
t∈[0,ϑ]

|u(t)− Tu(t)|
)α

(
max
t∈[0,ϑ]

|v(t)− Tv(t)|
)1−α ∫ ϑ

0

G(t, s)ds.

Therefore,

d∞(Tλu, Tλv) ≤ a[d∞(u, Tλu)]
α[d∞(v, Tλv)]

1−α.

Since all the conditions of Theorem 2.2 are satisfied, an integral equation (3.1) has a
unique solution u∗ ∈ C.
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