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Abstract This paper introduces an algorithm for approximating solutions of split feasibility problems by

employing a two-step inertial acceleration strategy along with a self-adaptive step size. This combination

enhances the convergence rate and reduces computational complexity of the proposed algorithm. The

nonasymptotic O(1/t) convergence rate and global convergence of the proposed method are established

within the context of Euclidean spaces. The algorithm is extended to handle multiple set split feasibility

problems, and a sensitivity analysis is conducted to identify optimal inertial parameter choices. Addition-

ally, the algorithm is applied to the LASSO problem. Comparative evaluations with various algorithms

from existing literature showcase the superior performance of the proposed algorithm.
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1. Introduction

The split feasibility problem (SFP) is defined as the problem of finding a point x̂ ∈ C
such that

Ax̂ ∈ Q, (1.1)

where C ⊆ Rk and Q ⊆ Rm are nonempty, closed and convex sets, and A : Rk → Rm is
a bounded and linear operator. We denote the solution set of problem (1.1) by Ω. For
the purpose of solving inverse problems arising from phase retrievals and medical image
reconstruction, Censor and Elfving [10] first presented the SFP in the setting of a finite
dimensional real Hilbert space. Numerous studies have demonstrated the applicability
of SFP in many fields of study, including computer tomography, image restoration, and
data reduction (see [3, 11–13, 29, 30] and other references therein).

Various iterative methods for solving the SFP have been introduced and investigated by
a number of researchers (see [9, 31, 38] and other references therein). The CQ algorithm,
developed by Bryne [8], is a famous method for approximating solutions of the SFP (1.1).
Iteratively, this algorithm generates the sequence {xt} ⊂ Rk:

xt+1 = PC(xt − λAT (I − PQ)Axt), ∀ t ≥ 1, (1.2)

where λ ∈
(
0, 2

L

)
, with L being the largest eigenvalue of the matrix ATA, PC , PQ are

the orthogonal projections onto C and Q, respectively and I is the identity map. The
author proved that the sequence generated by (1.2) converges to a solution of the SFP
(1.1) or, more generally, to a minimizer of ∥PQAx

∗ − Ax∗∥ over x∗ in C. The drawback
of this approach is that getting the step size λ requires the calculation of the spectral
radius of the matrix ATA or the norm estimate of the linear operator A, both of which
can be challenging to compute in practice. To overcome this, Byrne [8] presented a
method for estimating matrix norms (see [8], Proposition 4.1). However, the hypothesis
of [8], Proposition 4.1 appears to be mechanical and may not be friendly to implement
in practice. In order to overcome this drawback, using the idea of Yang [37], López et al.
[20] introduced an adaptive step size which has no connection with matrix norms. They
defined their stepsize λt as follows:

λt =
σtF (xt)

∥∇F (xt)∥2
, t ≥ 1,

where σt ∈ (0, 4), F (xt) =
1
2∥(I−PQ)Axt∥2 and ∇F (xt) = AT (I−PQAxt), for all t ≥ 1.

Due to the importance of the SFP, several modifications, extensions and generalization
of the problem and iterative methods for solving the SFP have been proposed by several
researchers (see [14, 15, 18, 19] and other references therein).

It is well-known that iterative methods for approximating solutions of SFP have slow
convergence properties. In recent years, several authors have dedicated a reasonable
research effort towards enhancing the convergence properties of existing iterative algo-
rithms. One of the famous strategy for doing so is the inertial extrapolation technique
which dates back to the early work of Polyak [25] in the context smooth convex minimiza-
tion problems. Simply put, the inertial acceleration strategy is a procedure which involves
a nonconvex combination of two previous terms to get the next iterate. For more on this
technique and its applications to iterative methods for solving the SFP (1.1), interested
readers may see, for example, [1, 2, 4, 6, 7, 28, 35], and the references therein.
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Dang et al. [17] incorporate the inertial technique in the classical CQ algorithm and
proposed a one-step inertial relaxed CQ algorithm for finding solutions of (1.1) in the
setting of a real Hilbert space. Their algorithm is the following:

Algorithm 1. One-step inertial CQ method
Initialization: Let x0, x1 ∈ H be chosen arbitrarily.
Step 1: For t ≥ 0, given the iterates xt−1 and xt

Step 2: Compute

xt+1 = PCt

(
Gt

(
xt + θt(xt − xt−1)

))
,

where Gt = (I − λFt), Ft = AT (I − PQt
)A, λ ∈ (0, 2

L ), L denotes the spectral radius of

ATA, 0 ≤ θt ≤ θ̄t with

θ̄t := min
{
θ,
(
max{{t2∥xt − xt−1∥2, t2∥xt − xt−1∥}

)−1
}
, θ ∈ [0, 1).

and Ct and Qt are nonempty closed and convex half-spaces.
Set t← t+ 1, and go to Step 2.

The authors proved that the sequence {xt} generated by Algorithm 1 converges weakly
to a point in Ω.

Remark 1.1. Observe that the step size λ depends on the knowledge of the spectral of
ATA which requires the knowledge of the operator norm. It is well-known that computing
norm of operators is not an easy task practice. It is also known that the sequences
generated by inertial algorithms do not obey the Férjer monotonicity (that is, they do
not satisfy ∥xn+1 − x∥ ≤ ∥xn − x∥, ∀x ∈ Ω) which is crucial in proving boundedness and
convergence and in addition to this, some researchers have also discovered certain cases
where the one-step inertial procedure fails to provide acceleration see, e.g., [27].

To address some of the points raised in the foregoing remark, some authors discovered
that considering the alternating inertial technique solves the problem of Férjer mono-
tonicity of the sequence. In fact, with regards to the SFP (1.1), Shehu et al [32] used the
idea of López et al. [20] to dispense with the dependency of step size on the operator
norm and used the alternating inertial technique to recover Férjer monotonicity. They
introduced the following algorithm:

Algorithm 2. Alternated Inertial CQ Method
Initialization: Choose x0, x1 ∈ Rk and set t = 1.
Step 1: Compute

wt =

{
xt, t = even

xt + θt(xt − xt−1), t = odd.

Step 2: Compute

xt+1 = PC
(
wt − λt∇F (wt)

)
,

Step 3: Set t← t+ 1, and go to Step 2,

where F (wt) =
1
2∥(I − PQ)Awt)∥, ∇F (wt) = AT (I − PQ)Awt,

λt =

{
ρtF (wt)

∥∇F (wt)∥2 , ∥∇F (wt)∥ ̸= 0

0, otherwise,
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{ρt} ⊂ (0, 4) is nondecreasing, {θt} ⊂ (0,∞), C and Q are nonempty closed and convex
sets.

The authors proved that the sequence {xt} generated by Algorithm 2 converges to a point
in Ω.

Remark 1.2. Observe that Algorithm 2 is the alternated inertial version of Algorithm
1 in the setting of Euclidean spaces. Furthermore, the dependency of the stepsize on the
knowledge of the operator norm in Algorithm 1 has been dispensed with in Algorithm 2.

Still on Remark 1.1, with regards to the failure of the one step inertial acceleration tech-
nique, in [26], Polyak discussed that the multi-step inertial methods can boost the speed
of optimization methods even though no convergence results of such multi-step inertial
methods was given by Polyak [26]. Recent research on multi-step inertial algorithms have
been explored, revealing improved numerical efficiency in the results. Notably, consider
the findings presented in, for instance, [5, 16, 23, 24]. The idea of the two-step inertia is
to compute the inertial term as follows: given three points xt, xt−1, xt−2 the inertial term
yt is computed by

yt = xt + θ(xt − xt−1) + δ(xt−1 − xt−2), where θ > 0 and δ < 0.

Recently, various scholars who have examined the multi-step inertial approaches have
shown that numerically, this method has advantage over the one-step inertial algorithms.
For some recent results interested readers may see [16, 22, 24, 39] and the references
therein.

Inspired by the mentioned works above and the growing interest on multi-step inertial
algorithms, our contributions are the following:

• we introduce a new CQ method with a two-step inertial extrapolation and self-
adaptive stepsize for finding the solution of the SFP (1.1). The global convergence
result and nonasymptotic O(1/t) convergence rate of the sequence generated by
our proposed method are presented.

• Our approach includes two-step inertia (which hastens convergence) and self-
adaptive step size (which lessens computational complexity). Consequently, our
approach gets over the restrictions of the one-step inertia approaches examined in
[4, 17, 21] and also the limitation of estimating the linear operator or the spectral
radius of a matrix used in [8].

• We solve a multiple set split feasibility problem (which will be discussed in section
5) using our proposed method.

• We give numerical comparison using different problems arising from applications
and compared the performances of our proposed algorithm with several algorithms
established in the literature.

We organize the rest of the paper as follows: In Section 2, we present some basic defi-
nitions, concepts, lemmas and results that are needed in the subsequent sections. The
proposed method is presented in Section 3. We study the global convergence analysis and
present nonasymptotic O(1/t) convergence rate of the proposed method in Section 4. In
Section 5, using our proposed method, we solve the multiple set split feasibility problem.
In Section 5.2, we present some numerical results of the proposed method to illustrate
the applicability of our method. Finally, we conclude in Section 6.
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2. Preliminaries

To obtain our global convergence and nonasymptotic O(1/t) convergence rate, we
present some basic results, lemmas and definitions in this section.

Definition 2.1. A mapping S : Rk → Rk is called

(i) nonexpansive if

∥Sx− Sy∥ ≤ ∥x− y∥, ∀ x, y ∈ Rk,

(ii) firmly nonexpansive if

∥Sx− Sy∥2 ≤ ∥x− y∥2 − ∥(I − S)x− (I − S)y∥2, ∀ x, y ∈ Rk.

Equivalently, the firmly nonexpansive mapping is given by

∥Sx− Sy∥2 ≤ ⟨x− y, Sx− Sy⟩, ∀ x, y ∈ Rk.

Recall that for a nonempty, closed and convex subset C of Rk, the metric projection
denoted by PC , is a map defined on Rk onto C which assigns to each x ∈ Rk, the unique
point in C, denoted by PCx such that

||x− PCx|| ≤ ||x− y||,∀ y ∈ C.

Lemma 2.2. Let C be a closed and convex subset of a real Hilbert space Rk and x, y ∈ Rk.
Then

(i) ∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩ ;
(ii) ∥PCx− y∥2 ≤ ∥x− y∥2 − ∥x− PCx∥2.

Lemma 2.3. Let C be a nonempty closed convex subset of a real Hilbert space Rk. For
any x ∈ Rk and z ∈ C, we have

z = PCx⇐⇒ ⟨x− z, z − y⟩ ≥ 0, ∀ y ∈ C.

Lemma 2.4. The following assertions hold:

(i) 2⟨x, y⟩ = ∥x∥2 + ∥y∥2 − ∥x− y∥2 = ∥x+ y∥2 − ∥x∥2 − ∥y∥2, ∀x, y ∈ Rk;
(ii) ∥αx+βy∥2 = α(α+β)∥x∥2+β(α+β)∥y∥2−αβ(1−α)∥x−y∥2, ∀x, y ∈ Rk, α, β ∈

R;
(iii) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩, ∀ x, y ∈ Rk.

Lemma 2.5. Let x, y, z ∈ Rk and α, β ∈ R. Then

∥(1 + α)x− (α− β)y − βz∥2 = (1 + α)∥x∥2 − (α− β)∥y∥2

− β∥z∥2 + (1 + α)(α− β)∥x− y∥2

+ β(1 + α)∥x− z∥2 − β(α− β)∥y − z∥2.

Definition 2.6. A function F : Rk → R is called convex, if for all v ∈ [0, 1] and x, y ∈ Rk,

F (vx+ (1− v)y) ≤ vF (x) + (1− v)F (y).

Remark 2.7. If F is convex on Rk and differentiable then

F (y) ≥ F (x) + ⟨y − x, ∇F (x)⟩, ∀ y ∈ Rk.
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Definition 2.8. A convex function F : Rk → R is said to be subdifferentiable at a point
x ∈ Rk if the set

∂F (x) = {u ∈ Rk | F (y) ≥ F (x) + ⟨u, y − x⟩, ∀y ∈ Rk} (2.1)

is nonempty, where each element in ∂F (x) is called a subgradient of F at x, ∂F (x) is
called the subdifferential of F at x and the inequality in (2.1) is called the subdifferential
inequality of F at x.

Remark 2.9. If F is convex and differential, then its gradient and subgradient coincide.

Definition 2.10. A function F : Rk → R is said to be lower semicontinuous at x if

xn → x implies F (x) ≤ lim inf
k→∞

F (xn).

Note that F is lower semicontinuous on Rk if it is lower semicontinuous at every point
x ∈ Rk.

Lemma 2.11. [9] Let F (x) := 1
2∥(I − PQ)Ax∥2, x ∈ C. Then

(i) F is convex and differentiable.
(ii) ∇F (x) = AT (I − PQ)Ax, x ∈ Rk.
(iii) F is lower semicontinuous on Rk.
(iv) ∇F is Lipschitz continuous with Lipschitz constant ∥A∥2.

3. Proposed method

Assumption 3.1. The following assumptions will be used in the convergence analysis.

(a) σ ∈ (0, 2).
(b) θ and δ lie in the region

G :=

{
(δ, θ) : 0 ≤ θ <

4− σ

8− σ
<

1

2
,
(8− σ)θ − (4− σ)

8− σ + 8θ
< δ ≤ 0

}
. (3.1)

(c) θ ∈
[
0, 1

2

)
and δ ≤ 0 such that

|δ| < 1−
(4 + σ

4− σ

)
θ.

(d) A is a bounded linear operator with adjoint or transpose AT , C and Q are
nonempty closed and convex subsets of Rk and Rm, respectively.

Remark 3.2. Conditions (a), (b) and (c) of Assumption 3.1 are easy to verify. Here is
a prototype of constants that satisfy these conditions

σ = 1.5, θ = 0.25, and δ = −0.1,

we will give a sensitivity analysis of these parameters to suggest the optimal choice for
these parameters in section 5.2.
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Algorithm 3. Two-step inertial CQ method
Initialization: Let x0, x1, x2 ∈ Rk be chosen arbitrarily. Set t := 0.
Step 1: Given the iterates xt−2, xt−1, xt for each t ≥ 2, choose δ and θ satisfying
Assumption 3.1.
Step 2: Compute

wt = xt + θ(xt − xt−1) + δ(xt−1 − xt−2)

and
xt+1 = PC(wt − ηt∇F (wt)),

where

F (wt) :=
1

2

∥∥∥(I − PQ

)
Awt

∥∥∥2, ∇F (wt) := AT (I − PQ)Awt

and

ηt :=

{
σF (wt)

∥∇F (wt)∥2 , ∥∇F (wt)∥ ̸= 0

0, otherwise.
(3.2)

Set t← t+ 1, and go to Step 2.

Remark 3.3. When δ = 0, our method reduces to a one-step inertial method for solving
SFP studied in Algorithm 1 with constant inertial parameter and self adaptive step size.

4. Convergence Analysis

Lemma 4.1. Assume that the solution set Ω of (1.1) is nonempty. Then the sequence
{xt} generated by Algorithm 3 satisfying Assumption 3.1 is bounded.

Proof. Let p ∈ Ω. Since ∇F (wt) = AT (I−PQ)Awt, we obtain from the firmly nonexpan-
sivity of I − PQ and the definition of F (wt) that

⟨∇F (wt), wt − p⟩ = ⟨AT (I − PQ)Awt, wt − p⟩
= ⟨(I − PQ)Awt, Awt −Ap⟩
= ⟨(I − PQ)Awt − (I − PQ)Ap, Awt −Ap⟩
≥ ∥(I − PQ)Awt∥2

= 2F (wt). (4.1)

Using Lemma 2.2 (ii) and definition of ηt, we have

∥xt+1 − wt∥ = ∥PC(wt − ηt∇F (wt))− wt∥
≤ ∥wt − ηt∇F (wt)− wt∥
= ηt∥∇F (wt)∥

= σ
F (wt)

∥∇F (wt)∥
. (4.2)
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From the definition of xt+1 in Step 2, (4.1) and (4.2), we have

∥xt+1 − p∥2 = ∥PC(wt − ηt∇F (wt))− p∥2

≤ ∥wt − p− ηt∇F (wt)∥2

= ∥wt − p∥2 + (ηt)
2∥∇F (wt)∥2 − 2ηt⟨∇F (wt), wt − p⟩

≤ ∥wt − p∥2 + (ηt)
2∥∇F (wt)∥2 − 4ηtF (wt)

= ∥wt − p∥2 − 4ηtF (wt) + (ηt)
2∥∇F (wt)∥2

= ∥wt − p∥2 − σ(4− σ)
F 2(wt)

∥∇F (wt)∥2
(4.3)

≤ ∥wt − p∥2 − 4− σ

σ
∥xt+1 − wt∥2. (4.4)

Also, by the definition of wt and Lemma 2.5, we have

∥wt − p∥2 = ∥(1 + θ)(xt − p)− (θ − δ)(xt−1 − p)− δ(xt−2 − p)∥2

= (1 + θ)∥xt − p∥2 − (θ − δ)||xt−1 − p∥2

−δ∥xt−2 − p∥2 + (1 + θ)(θ − δ)∥xt − xt−1∥2

+δ(1 + θ)∥xt − xt−2∥2 − δ(θ − δ)∥xt−1 − xt−2∥2. (4.5)

From the definition of wt and applying the Cauchy Schwartz inequality, we have

∥xt+1 − wt∥2 = ∥xt+1 − (xt + θ(xt − xt−1) + δ(xt−1 − xt−2))∥2

= ∥xt+1 − xt∥2 − 2θ⟨xt+1 − xt, xt − xt−1⟩
+ 2δ⟨xt − xt+1, xt−1 − xt−2⟩+ θ2∥xt − xt−1∥2

+ 2δθ⟨xt − xt−1, xt−1 − xt−2⟩+ δ2∥xt−1 − xt−2∥2

≥ ∥xt+1 − xt∥2 − 2θ∥xt+1 − xt∥∥xt − xt−1∥
− 2|δ|∥xt − xt+1∥∥xt−1 − xt−2∥+ θ2∥xt − xt−1∥2

− 2|δ|θ∥xt−1 − xt∥∥xt−1 − xt−2∥+ δ2∥xt−1 − xt−2∥2

≥ ∥xt+1 − xt∥2 − θ
[
∥xt+1 − xt∥2 + ∥xt − xt−1∥2

]
− |δ|

[
∥xt+1 − xt∥2 + ∥xt−1 − xt−2∥2

]
+ θ2∥xt − xt−1∥2 − |δ|θ

[
∥xt−1 − xt∥2 + ∥xt−1 − xt−2∥2

]
+ δ2∥xt−1 − xt−2∥2

= (1− |δ| − θ)∥xt+1 − xt∥2 + (θ2 − θ − |δ|θ)∥xt − xt−1∥2

+ (δ2 − |δ| − |δ|θ)∥xt−1 − xt−2∥2. (4.6)
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Using the estimate in (4.3), equation (4.5), inequality (4.6) and Assumption 3.1, we have

∥xt+1 − p∥2 ≤ ∥wt − p∥2 − 4− σ

σ
∥xt+1 − wt∥2

≤ (1 + θ)∥xt − p∥2 − (θ − δ)∥xt−1 − p∥2 − δ∥xt−2 − p∥2 +(1 + θ)(θ − δ)∥xt − xt−1∥2

+ δ(1 + θ)∥xt − xt−2∥2 − δ(θ − δ)∥xt−1 − xt−2∥2

− (4− σ)

σ

[
(1− |δ| − θ)∥xt+1 − xt∥2 + (θ2 − θ − |δ|θ)∥xt − xt−1∥2

+ (δ2 − |δ| − |δ|θ)∥xt−1 − xt−2∥2
]

= (1 + θ)∥xt − p∥2 − (θ − δ)∥xt−1 − p∥2 − δ∥xt−2 − p∥2

+
[
(1 + θ)(θ − δ)− (4− σ)

σ
(θ2 − θ − |δ|θ)

]
∥xt − xt−1∥2 +δ(1 + θ)∥xt − xt−2∥2

−
[
δ(θ − δ) +

(4− σ)

σ
(δ2 − |δ| − |δ|θ)

]
∥xt−1 − xt−2∥2 − (4− σ)

σ

(
1− |δ| − θ

)
∥xt+1 − xt∥2

= (1 + θ)∥xt − p∥2 − (θ − δ)∥xt−1 − p∥2 − δ∥xt−2 − p∥2

+

[(
1− 4− σ

σ

)
θ2 + θ

(
1 +

4− σ

σ

)
− δ − δθ +

(4− σ

σ

)
|δ|θ

]
∥xt − xt−1∥2 +δ(1 + θ)∥xt − xt−2∥2

+
[(

1− 4− σ

σ

)
δ2 − δθ +

(4− σ)

σ
|δ|+ (4− σ)

σ
|δ|θ

]
∥xt−1 − xt−2∥2

− (4− σ)

σ

(
1− |δ| − θ

)
∥xt+1 − xt∥2

≤ (1 + θ)∥xt − p∥2 − (θ − δ)∥xt−1 − p∥2 − δ∥xt−2 − p∥2

+

[( 4

σ

)
θ − δ − δθ +

( 4

σ
− 1

)
|δ|θ

]
∥xt − xt−1∥2

+
[( 4

σ
− 1

)
|δ|θ − δθ +

( 4

σ
− 1

)
|δ|

]
∥xt−1 − xt−2∥2

−
( 4

σ
− 1

)(
1− |δ| − θ

)
∥xt+1 − xt∥2. (4.7)

From (4.7), we have that

Γt+1 ≤ Γt +
[( 8

σ
− 1

)
θ −

( 4

σ
− 1

)
+ (1 + θ)

(( 4

σ
− 1

)
|δ| − δ

)]
∥xt − xt−1∥2

(4.8)

+
[( 4

σ
− 1

)
|δ|θ − δθ +

( 4

σ
− 1

)
|δ|

]
∥xt−1 − xt−2∥2,

where

Γt = ∥xt − p∥2 − θ∥xt−1 − p∥2 − δ∥xt−2 − p∥2

+
( 4

σ
− 1

)(
1− |δ| − θ

)
∥xt − xt−1∥2, ∀ t ≥ 1.

Also, we observe that

∥xt−1 − p∥2 ≤ 2∥xt − xt−1∥2 + 2∥xt − p∥2. (4.9)

Now, we show that Γt ≥ 0, ∀t ≥ 1.
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Using (4.9) and Assumption 3.1, we have

Γt = ∥xt − p∥2 − θ∥xt−1 − p∥2 − δ∥xt−2 − p∥2 +
( 4

σ
− 1

)(
1− |δ| − θ

)
∥xt − xt−1∥2

≥ ∥xt − p∥2 − 2θ∥xt − xt−1∥2 − 2θ∥xt − p∥2 − δ∥xt−2 − p∥2

+
( 4

σ
− 1

)(
1− |δ| − θ

)
∥xt − xt−1∥2

= (1− 2θ)∥xt − p∥2 − δ∥xt−2 − p∥2 +
( 4

σ
− 1

)(
1− |δ| −

(4 + σ

4− σ

)
θ
)
∥xt − xt−1∥2

≥ 0. (4.10)

From (4.8), we have

Γt+1 − Γt ≤ −
[( 8

σ
− 1

)
θ −

( 4

σ
− 1

)
+ (1 + θ)

(( 4

σ
− 1

)
|δ| − δ

)](
∥xt−1 − xt−2∥2

− ∥xt − xt−1∥2
)
−
[
−
(( 8

σ
− 1

)
θ −

( 4

σ
− 1

)
+ (1 + θ)

(( 4

σ
− 1

)
|δ| − δ

))
−
(( 4

σ
− 1

)
|δ|θ − δθ +

( 4

σ
− 1

)
|δ|

)]
∥xt−1 − xt−2∥2

= −
[( 8

σ
− 1

)
θ −

( 4

σ
− 1

)
+ (1 + θ)

(( 4

σ
− 1

)
|δ| − δ

)](
∥xt−1 − xt−2∥2

− ∥xt − xt−1∥2
)
−
[( 4

σ
− 1

)
−
( 8

σ
− 1

)
θ − 2

( 4

σ
− 1

)
|δ|

− 2
( 4

σ
− 1

)
|δ|θ + δ + 2θδ

]
∥xt−1 − xt−2∥2

= a1

(
∥xt−1 − xt−2∥2 − ∥xt − xt−1∥2

)
− a2∥xt−1 − xt−2∥2, (4.11)

where

a1 = −
[( 8

σ
− 1

)
θ −

( 4

σ
− 1

)
+ (1 + θ)

(( 4

σ
− 1

)
|δ| − δ

)]
and

a2 =
[( 4

σ
− 1

)
−

( 8

σ
− 1

)
θ − 2

( 4

σ
− 1

)
|δ| − 2

( 4

σ
− 1

)
|δ|θ + δ + 2θδ

]
.

Since δ ≤ 0, |δ| = −δ and we have

a1 = −
[( 8

σ
− 1

)
θ −

( 4

σ
− 1

)
+ (1 + θ)

(( 4

σ
− 1

)
|δ| − δ

)]
> 0

⇐⇒ (8− σ)θ − (4− σ)

4(1 + θ)
< δ.

Also,

a2 =
[( 4

σ
− 1

)
−
( 8

σ
− 1

)
θ − 2

( 4

σ
− 1

)
|δ| − 2

( 4

σ
− 1

)
|δ|θ + δ + 2θδ

]
> 0

⇐⇒ (8− σ)θ − (4− σ)

8− σ + 8θ
< δ.

For 0 ≤ θ <
4− σ

8− σ
<

1

2
, we have

(8− σ)θ − (4− σ) <
(8− σ)θ − (4− σ)

4(1 + θ)
<

(8− σ)θ − (4− σ)

8− σ + 8θ
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which implies by Assumption 3.1 that a1 > 0 and a2 > 0 if

(8− σ)θ − (4− σ)

8− σ + 8θ
< δ ≤ 0.

From (4.11) we have

Γt+1 + a1∥xt − xt−1∥2 ≤ Γt + a1∥xt−1 − xt−2∥2 − a2∥xt−1 − xt−2∥2. (4.12)

Also from (4.12), we have

∆t+1 ≤ ∆t − a2∥xt−1 − xt−2∥2, (4.13)

where ∆t+1 = Γt+1 + a1∥xt − xt−1∥2 and ∆t = Γt + a1∥xt−1 − xt−2∥2.
Now, since a2 > 0, we have from (4.13) that

∆t+1 ≤ ∆t

which implies that the sequence {∆t} is decreasing, thus the limit lim
t→∞

∆t exists. Conse-

quently, from (4.12) we have that

lim
t→∞

a2∥xt−1 − xt−2∥2 = 0

and

lim
t→∞

∥xt−1 − xt−2∥ = 0.

From the previous equation and the fact that lim
t→∞

∆t exists, we have that lim
t→∞

Γt exists.

Also, from the definition of wt, we have

∥xt+1 − wt∥ = ∥xt+1 − xt − θ(xt − xt−1)− δ(xt−1 − xt−2)∥
≤ ∥xt+1 − xt∥+ θ∥xt − xt−1∥+ |δ|∥xt−1 − xt−2∥ → 0, as t→∞.

(4.14)

Also,

∥wt − xt∥ ≤ θ∥xt − xt−1∥+ |δ|∥xt−1 − xt−2∥ → 0, t→∞.

Using the fact that lim
t→∞

Γt exists and lim
t→∞

∥xt+1 − xt∥ = 0, we have

lim
t→∞

[
∥xt − p∥2 − θ∥xt−1 − p∥2 − δ∥xt−2 − p∥2

]
(4.15)

exists. We obtain from (4.10) that the sequence {xt} is bounded. From (4.3), (4.5) and
(4.15), we have

lim
t→∞

F (xt)

∥∇F (xt)∥
= 0. (4.16)

Also, we note that

∥∇F (xt)∥ = ∥∇F (xt)−∇F (p)∥
≤ ∥A∥2∥xt − p∥, ∀ p ∈ Ω.

Hence, {∇F (xt)} is bounded. Therefore, from (4.16), we have

lim
t→∞

F (xt) = 0. (4.17)
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Theorem 4.2. Let {xt} be a sequence generated by Algorithm 3 satisfying Assumption
3.1. Assume that the solution set Ω of (1.1) is nonempty. Then {xt} converges to a point
in Ω.

Proof. Since {xt} is bounded from Lemma 4.1, there exists a subsequence {xtk} of {xt}
such that xtk → u∗ ∈ Rk. Also, since F is lower semicontinuous we have

0 ≤ F (u∗) ≤ lim inf
k→∞

F (xtk) = lim
t→∞

F (xt) = 0.

Therefore, F (u∗) = 0. Thus, Au∗ ∈ Q which implies that u∗ ∈ Ω. Suppose that there
exist {xtk} ⊂ {xt} and {xtj} ⊂ {xt} such that xtk → u∗, k → ∞ and xtj → u, j → ∞.
We show that u = u∗.
Note that

2⟨xt, u− u∗⟩ = ∥xt − u∗∥2 − ∥xt − u∥2 − ∥u∗∥2 + ∥u∥2, (4.18)

2⟨−θxt−1, u− u∗⟩ = −θ∥xt−1 − u∗∥2 + θ∥xt−1 − u∥2 + θ∥u∗∥2 − θ∥u∥2 (4.19)

and

2⟨−δxt−2, u− u∗⟩ = −δ∥xt−2 − u∗∥2 + δ∥xt−2 − u∥2 + δ∥u∗∥2 − δ∥u∥2. (4.20)

Combining (4.18), (4.19) and (4.20), we have

2⟨xt − θxt−1 − δxt−2, u− u∗⟩ =
(
∥xt − u∗∥2 − θ∥xt−1 − u∗∥2 − δ∥xt−2 − u∗∥2

)
−
(
∥xt − u∥2 − θ∥xt−1 − u∥2 − δ∥xt−2 − u∥2

)
+ (1− θ − δ)

(
∥u∥2 − ∥u∗∥2

)
.

From (4.15), we have

lim
[
∥xt − u∥2 − θ∥xt−1 − u∥2 − δ∥xt−2 − u∥2

]
exists. Also,

lim
[
∥xt − u∗∥2 − θ∥xt−1 − u∗∥2 − δ∥xt−2 − u∗∥2

]
exists which implies that

lim
t→∞
⟨xt − θxt−1 − δxt−2, u− u∗⟩

exists. Now,

⟨u∗ − θu∗ − δu∗, u− u∗⟩ = lim
k→∞

⟨xtk − θxtk−1
− δxtk−2

, u− u∗⟩

= lim
t→∞
⟨xt − θxt−1 − δxt−2, u− u∗⟩

= lim
j→∞
⟨xtj − θxtj−1

− δxtj−2
, u− u∗⟩

= ⟨u− θu− δu, u− u∗⟩
which implies that

(1− θ − δ)∥u− u∗∥ = 0.

Now, since δ ≤ 0 < 1 − θ, see (3.1), we have that u = u∗. Hence, the sequence {xt}
converges to a point in Ω. This completes the proof.

Now, we are in the position to present a nonasymptotic O(1/t) convergence rate of our
proposed Algorithm 3.
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Theorem 4.3. Assume that Ω ̸= ∅ and x0 = x−1 = x−2. Let {xt} be a sequence generated
by Algorithm 3 satisfying Assumption 3.1. Then, for any p ∈ Ω and t > 0, the following
condition holds

min
0≤j≤t−2

∥xj+1 − wj∥2 ≤ 3
(
1 + θ2 + δ2

) 1

a2

(1− θ − δ)∥x0 − p∥2

t− 1
, (4.21)

where a2 =
[(

4
σ − 1

)
−
(

8
σ − 1

)
θ − 2

(
4
σ − 1

)
|δ| − 2

(
4
σ − 1

)
|δ|θ + δ + 2θδ

]
.

Proof. Let p ∈ Ω. Then, it follows from (4.13) that

∆0 = Γ0 = ∥x0 − p∥2 − θ∥x−1 − p∥2 − δ∥x−2 − p∥2 + 4− σ

σ
(1− |δ| − θ)∥x0 − x−1∥2

= ∥x0 − p∥2 − θ∥x−1 − p∥2 − δ∥x−2 − p∥2

= (1− θ − δ)∥x0 − p∥2. (4.22)

Also, from (4.13) we have

a2

t∑
j=0

∥xj−1 − xj−2∥2 ≤ ∆0 −∆t+1

which implies that

t∑
j=0

∥xj−1 − xj−2∥2 ≤
1

a2
∆0 =

1

a2
Γ0

=
1

a2
(1− θ − δ)∥x0 − p∥2.

Hence,

min
0≤j≤t

∥xj−1 − xj−2∥2 ≤
1

a2

(1− θ − δ)∥x0 − p∥2

t+ 1
.

Consequently,

min
0≤j≤t−1

∥xj − xj−1∥2 ≤
1

a2

(1− θ − δ)∥x0 − p∥2

t
.

and

min
0≤j≤t−2

∥xj+1 − xj∥2 ≤
1

a2

(1− θ − δ)∥x0 − p∥2

t− 1
.

From (4.14) and using Young’s inequality, we have

∥xt+1 − wt∥2 =
(
∥xt+1 − xt∥+ θ∥xt − xt−1∥+ |δ|∥xt−1 − xt−2∥

)2

≤ 3
(
∥xt+1 − xt∥2 + θ2∥xt − xt−1∥2 + δ2|xt−1 − xt−2∥2

)
.
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Hence,

min
0≤j≤t−2

∥xj+1 − wj∥2 ≤ 3
(

min
0≤j≤t−2

∥xj+1 − xj∥2 + θ2 min
0≤j≤t−2

∥xj − xj−1∥2

+ δ2 min
0≤j≤t−2

∥xj−1 − xj−2∥2
)

≤ 3(1 + θ2 + δ2)
1

a2

(1− θ − δ)∥x0 − p∥2

t− 1

which completes the proof.

5. Applications and Numerical Results

5.1. Application to multiple set split feasibility problem

In this section, we present an extension of our proposed method to solve a multiple set
split feasibility problem.
Consider the following multi set split feasibility problem:

Find x̂ ∈ ∩ri=1Ci such that Ax̂ ∈ ∩sj=1Qj , (5.1)

where Ci, i = 1, 2, · · · , r, Qj , j = 1, 2, · · · , s are families of convex closed sets in Rk and
Rm respectively, and A : Rk → Rm a bounded linear operator. Let Θ ̸= ∅ be the solution
set of the multi set split feasibility problem.
Now, we recall the proximity function which is associated with the multi set split feasibility
problem (5.1) (see [36]): Assume that φj > 0, j = 1, 2, · · · , s, then

F (x) :=
1

2

s∑
j=1

φj∥Ax̂− PQj
(Ax̂)∥2, ∀x̂ ∈ Rk. (5.2)

In literature, it have been shown that F is differentiable with gradient

∇F (x) :=

s∑
j=1

φjA
T (I − PQj

)Ax̂, ∀ x̂ ∈ Rk. (5.3)

From our proposed method and the idea of Wang et al. [33], we propose a two-step iner-
tial projected method to solve (5.1). The proposed method for solving (5.1) is defined as
follows:

Algorithm 4. Two-step inertial CQ method for solving multi set split feasibility
problem
Initialization: Let x0, x1, x2 ∈ Rk be chosen arbitrarily. Set t := 2.
Step 1: Given the iterates xt−2, xt−1, xt, for each t ≥ 2, choose δ and θ satisfying
Assumption (3.1) and define I := {1, 2, · · · , s}.
Step 2: Compute

wt = xt + θ(xt − xt−1) + δ(xt−1 − xt−2)

Step 2: Define the weights {wt,i ∈ (0,∞) : i ∈ I} such that
s∑

i=1

wt,i > τ and inf
i∈It

wt,i > τ,

where It := {i ∈ I : wt,i > 0}.
Step 3: Compute

xt+1 =

s∑
i=1

wt,iPCi(wt − ηt∇F (wt)),
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where

F (wt) :=
1

2

s∑
j=1

φj

∥∥∥(I − PQj

)
Awt

∥∥∥2, ∇F (wt) :=
s∑

j=1

φjA
T (I − PQj

)Awt

and

ηt :=

{
σF (wt)

∥∇F (wt)∥2 , ∥∇F (wt)∥ ̸= 0,

0, otherwise.
(5.4)

Set t← t+ 1, and go to Step 2.

Definition 5.1. Let {xt} be a sequence generated by Algorithm 4 and let v be a non-
negative integer. Then, the sequence {xt} satisfies the v-intermittent set control if

It ∪ · · · ∪ It+v−1 = I, ∀ t ≥ 1.

Following the same line of argument in Theorem 3.1 of Wang et al. [33] and Theorem 4.1
we obtain the following result for solving (5.1).

Theorem 5.2. Assume that the solution set Ω of (1.1) is nonempty. Suppose that there
exists a positive integer v such that the sequence {xt} satisfies the v-intermittent set
control. Then the sequence {xt} generated by Algorithm 4 satisfying Assumption 3.1
converges to a point in Ω.

5.2. Numerical illustrations

In this section we will give numerical illustrations and compare the performance of our
proposed Algorithm 3 with some recent algorithms in the literature. In the first example,
we will perform a sensitivity analysis on the parameters given in Assumption 3.1.

Example 5.3. Let A : R5 → R5 be a symmetric and positive definite matrix defined by

Ax =


11 −8 0.5 0.5 2
−8 10 −1.5 −1.5 4
0.5 −1.5 13 −1 −0.5
0.5 −1.5 −1 10 1
2 4 −0.5 1 13



x1

x2

x3

x4

x5

 then ATx = Ax.

Let C = {x ∈ R5 : ∥x∥ ≤ 3

2
} and Q = {x ∈ R5 : ∥x∥ ≤ 2}.

Set η0 = 1.5, x0 = x1 = x2 = (1, 1, 1, 1, 1)T . The simulation is terminated when ∥xt+1 −
xt∥ < 10−8 or n = 1001. The results obtained are presented in Table 1 and Figures 1, 2
and 3.
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Table 1. Convergence Performance of Algorithm 3 with Respect to Parameters
σ θ δ Number of Iterations CPU Time (secs)
1.5 0.25 −0.1 33 0.0049
1.5 0.25 −0.05 31 0.0036
1.5 0.25 −0.01 34 0.0065
1.5 0.25 0 36 0.0087

1.9 0 −0.05 33 0.0056
1.9 0.1 −0.05 32 0.0052
1.9 0.2 −0.05 30 0.0048
1.9 0.3 −0.05 28 0.0039

1.5 0.3 −0.05 31 0.0055
1 0.3 −0.05 39 0.0085
0.5 0.3 −0.05 39 0.0165
0.1 0.3 −0.05 244 0.0403
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Figure 1. Behaviour of Algorithm 3 for θ = 0.25, σ = 1.5 and varied
values of δ
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Figure 2. Behaviour of Algorithm 3 for δ = −0.05, σ = 1.9 and varied
values of θ
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Figure 3. Behavior of Algorithm 3 for δ = −0.05, θ = 0.3 and varied
values of σ

 

 

Bangmod Int. J. Math. & Comp. Sci., 2025



40 A. Adamu et al.

Discussion of Results. From Table 1 and Figures 1, 2 and 3, we observe that the choice
of δ, θ and σ are very sensitive and affects the behavior of our proposed Algorithm 3.
Based on the results in Table 1 and the simulations in Figures 1, 2 and 3, we see that
the best set of parameters for Algorithm 3 are δ = −0.05, θ = 0.3 and σ = 1.9. Using
the best set of parameters, we will compare the performance of our proposed Algorithm
3 (AOOZ Alg) with Algorithm 3.1 of Dang et al. [17] (DSX Alg), Algorithm 1 of Dong
et al. [18] (DLQY Alg), Algorithm 1 of Shehu et al. [32] (SDL Alg) and Algorithm
4.1 of Wang and Xu [34] (WX Alg). Since the choice of parameters are sensitive to
the behaviour algorithms, we will choose the same parameters used by the authors in
their papers. However, Wang and Xu [34] did not give any numerical example in their
paper. Hence, in WX Alg we choose αn = 1

105(t+1) and γ = 10−4. We will consider

two set of initial points to test the robustness of each algorithm. The simulation is
terminated when Et = ∥xt+1 − xt∥ < 10−8 or t = 1001. The results obtained for Case 1:
x0 = x1 = x2 = (0.5, 1, 2, 0.25,−1)T and Case 2: x0 = x1 = x2 = (−2, 1.5,−2,−0.25, 3)T
and are presented in Table 2, Figure 4 and Figure 5.

Table 2. Table for Two Cases of the Initial Points
Algorithm Case Number of Iterations CPU Time (secs)

AOOZ Alg
Case 1 28 0.0036
Case 2 31 0.0077

DSX Alg
Case 1 101 0.0206
Case 2 92 0.0254

DLQY Alg
Case 1 99 0.0254
Case 2 98 0.0174

SDL Alg
Case 1 415 0.0507
Case 2 303 0.0571

WX Alg
Case 1 412 0.0829
Case 2 410 0.0577
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Figure 4. Graph the Iterates for the Cases 1
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Figure 5. Graph the Iterates for the Cases 2

In the next example we test the robustness of each algorithm for higher dimension.

Example 5.4. Let A : Rk → Rk be defined as Ax = Bx where B is a randomly generated
matrix such that its entries bij ∈ (0, 1).

Let C =
{
x ∈ Rk : ∥x∥ ≤ 3

2

}
and Q = {x ∈ Rk : ∥x∥ ≤ 2}.

We will consider two dimensions k = 100 and k = 1000 and study the behaviour of each
algorithm with respect to these dimensions. The initial guess x0 is generated randomly
and we set x1 = x2 = x0 for all the algorithms. Since x0 is generated randomly, as we
saw in Example 5.3, the choice of x0 affects the required computational time and number
of iterations to satisfy the stopping criteria. So, for fair comparison, for each algorithm,
we run the simulation ten (10) times and we report the best performance. The simulation
is terminated when Et = ∥xt+1 − xt∥ < 10−8 or t = 3001. The results obtained for each
dimension is presented in Table 3, Figure 6 and Figure 7.
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Table 3. Table for Two Cases of the Initial Points
Algorithm Dimension k Number of Iterations CPU Time (secs)

AOOZ Alg
100 38 0.0096
1000 656 2.3878

DSX Alg
100 387 0.0601
1000 3000 12.2461

DLQY Alg
100 117 0.0432
1000 871 3.0320

SDL Alg
100 323 0.0517
1000 1397 4.8420

WX Alg
100 457 0.0357
1000 2537 6.1402
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Figure 6. Graph the Iterates for k = 100
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Figure 7. Graph the Iterates for 1000

Discussion of Results. We observe from Examples 5.3 and 5.4 our proposed Algorithm
3 outperforms the Algorithms Dang et al. [17] (DSX Alg), Dong et al. [18] (DLQY
Alg), Shehu et al. [32] (SDL Alg) and Wang and Xu [34] (WX Alg) in terms of the
computational time and number of iterations required to satisfy the stopping criterion.
Surprisingly, for these examples, the algorithms of Dong et al. [18] and Shehu et al. [32]
stopped after a few iteration when we choose the inertial term wn to be alternating as
given their respective papers. For the purpose of illustrations, it should be noted that
the results presented for the algorithms of Dong et al. [18] and Shehu et al. [32] are for
the fully inertial versions of their respective algorithms. This perhaps should serve as
an explanation for the oscillatory behaviour of the iterates generated by the algorithms.
Based on the iterates generated by the algorithm Dang et al. [17] (DSX Alg) when we
increased the dimension to 1000, we can concluded that their algorithm is not suitable
for higher dimension.

5.3. Application to LASSO Problem

Example 5.5. We consider the following LASSO problem

min
{1

2
∥Ax− b∥22 : x ∈ Rk, ∥x∥1 ≤ r

}
, (5.5)

where A ∈ Rm×k, m < k, b ∈ Rm and r > 0. We consider k = 6144 and m = 1440. A
normal distribution with a standard deviation of zero and a unit variance serves as the
basis for the matrix A. Additionally, the genuine spare signal x∗ is formed by uniformly
dispersing throughout the interval [−1, 1] with spikes (nonzero entries) 90 and 180 while
the rest are kept at zero. The sample data b is given as b = Ax∗.
The solution of the minimization problem (5.5) under certain conditions on the matrix A
is similar to the ℓ1-norm solution of the under determined linear system. For the problem
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under consideration (1.1) , we define

C =
{
x : ∥x∥1 ≤ t

}
and Q = {b}.

We will use the subgradient projection since the projection onto the closed convex C does
not have a closed form solution. Now, we define a convex function d(x) := ∥x∥1 − t and
define

Ct =
{
x ∈ Rk : d(wt) + ⟨ζt, x− wt⟩ ≤ 0},

where ζ ∈ ∂d(wt). The orthogonal projection on Ct is given by

PCt(ỹ) =

{
y, d(wt) + ⟨ζt, ỹ − wt⟩ ≤ 0,

y − d(wt)+⟨ζt,ỹ−wt⟩ζt
∥ζt∥2 , otherwise.

Therefore, at point x, the subdifferential ∂c is given by

∂c(x) =


1, x > 0,

[−1, 1], x = 0,

−1, x < 0.

Now, we will compare the performance of our proposed Algorithm 3 (AOOZ Alg) with
Algorithm 3.1 of Dang et al. [17] (DSX Alg), Algorithm 1 of Dong et al. [18] (DLQY
Alg), Algorithm 1 of Shehu et al. [32] (SDL Alg) Algorithm 4.1 of Wang and Xu [34] (WX
Alg). in the restoration process of the sparse signal. We use the same control parameters
used in Examples 5.3 and 5.4. Furthermore, we evaluate the mean square error (MSE)
defined by:

MSE =
1

k
∥x∗ − x∥2 (5.6)

to make sure that the restored signal has a good length and observation compared to the
original signal, where x∗ is an approximated signal of x. The initial points x0, x1, x2 are
choosen to be zeros and we use tolerance of ∥xt − x∗∥ < 10−5 and maximum number of
iterations t = 1000 are used as stopping criterion. We present the results of the numerical
simulation in Figures 8 and 9.
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Figure 8. Restored Signal via One-Inertia and Two-Inertia for 90 spikes
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Figure 9. Restored Signal via One-Inertia and Two-Inertia for 180 spikes

Discussion of Results. We observe from Figures 8 and 9 the MSE values of all the
algorithms show that restored signals have a good length and observation compared to
the original signal. However, the superiority between the algorithms will be determined
by the required number of iterations and CPU time to satisfy the stopping criteria since
the MSE values is only a measure of the quality of the restored signals. Looking at these
Figures again, one will see that our proposed algorithm (AOOZ Alg) restored the signals
in much fewer iterations and CPU time with the best MSE value compared to other
algorithms. Notably, when the number of spikes was increase to 180, all the methods
failed to satisfy the stopping criteria before the specified maximum number of iteration
(1000) was reached. But for 180 spikes, it took our proposed algorithm just 387 iteration
and a CPU time of 5.49s to restore the signal with accuracy (MSE value) of 2E-09. Thus,
based on these examples, we see that our proposed two-step inertial algorithm (Algorithm
3) provides computational advantage over the algorithms of Algorithm 3.1 of Dang et al.
[17] (DSX Alg), Algorithm 1 of Dong et al. [18] (DLQY Alg), Algorithm 1 of Shehu et
al. [32] (SDL Alg) Algorithm 4.1 of Wang and Xu [34] (WX Alg).
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6. Conclusion

In this work, we studied the split feasibility problem. We introduced an algorithm
with two-step inertial extrapolation and self adaptive stepsize to solve the aforementioned
problem. We presented a global convergence and non-asymptotic O(1/t) convergence rate
of the proposed method. Furthermore, we applied our proposed method solve a multiple
set feasibility problem. Finally, we presented numerical results of our proposed method
to illustrate the applicability of our method and presented an application of our result to
LASSO problem.
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