
 

 

Volume 11 (2025)
Pages 109–134

Strong Convergence Accelerated Alternated
Inertial Relaxed Algorithm for Split Feasibilities
with Applications in Breast Cancer Detection

 

 

Abdulwahab Ahmad1,2 , Poom Kumam1,∗

1Center of Excellence in Theoretical and Computational Science (TaCS-CoE) & Fixed Point Research
Laboratory, Room SCL 802, Fixed Point Laboratory, Science Laboratory Building, Departments of
Mathematics, Faculty of Science , King Mongkuts University of Technology Thonburi (KMUTT), 126
Pracha-Uthit Road Thung Khru, Bang Mod, 10140, Bangkok, Thailand
E-mail: abumuhammaddm@gmail.com
2Department of Mathematics, School of Secondary Education, Sciences, Federal College of Education,
Katsina, 2041, Katsina, Nigeria
E-mail:poom.kum@kmutt.ac.th

*Corresponding author.

Received: 25 September 2024 / Accepted: 7 March 2025

Abstract In this article, we construct an accelerated relaxed algorithm with an alternating inertial

extrapolation step. The proposed algorithm uses a three-term conjugate gradient-like direction, which

helps to fasten the sequence of its iterates to a point in a solution set. The algorithm employs a self-

adaptive step-length criterion that does not require any information related to the norm of the operator or

the use of a line-search procedure. Moreover, we formulate and prove a strong convergence theorem for the

algorithm to a minimum-norm solution of a split feasibility problem in infinite-dimensional real Hilbert

spaces. Furthermore, we investigate its applications in breast cancer detection by solving classification

problems for an interesting real-world breast cancer dataset, based on the extreme learning machine

(ELM) with the ℓ1-regularization approach (i.e., the Lasso model) and the ℓ1-ℓ2 hybrid regularization

technique. The performance results of the experiments demonstrate that the proposed algorithm is robust,

efficient, and achieves better generalization performance and stability than some existing algorithms in

the literature.
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1. Introduction

In this work, H1 and H2 are two real Hilbert spaces, and C ⊆ H1 and Q ⊆ H2 are two
nonempty, closed and convex sets. The split feasibility problem (SFP) is of finding a
point s∗ ∈ C if it exists, such that

As∗ ∈ Q, (1.1)

where A : H1 → H2 is a bounded linear operator. The problem (1.1) was initially coined
by Censor and Elfving [10] and has captured the attentions of many researchers, due to
its vast area of applications arising from different real-world challenging problems, some
of which include the problems in X-ray tomography [9, 32], machine learning [38], medical
image reconstruction, signal processing, jointly constrained Nash equilibrium, and others,
see for examples [13, 16, 34, 40].

In [10], the proposed algorithm requires the direct use of inverse of the operator A, which
consequently, turn out to become unrealistic in solving some large scale problems. In
attempts to tackle this serious problem, extensive studies were carried out by various
researchers. One of the well known and noticeable efforts in this regard was due to
Byrne [6], who developed an algorithm based on the classical gradient projection method
(GPM) called CQ algorithm, which is also a special case of the proximal forward-backward
splitting method [12]. For any initial point s0 ∈ H1, it is recursively defined by

sn+1 = PC
(
sn − τA∗(I − PQ)Asn

)
, ∀n ≥ 0, (1.2)

where PC and PQ are metric projection operators from H1 and H2 onto C and Q, respec-
tively, A∗ is the adjoint operator of A and τ ∈ (0, 2

||A||2 ) is the step length. Although

Method (1.2) has the advantage that it does not require the direct use of the inverse of
A, making its implementations easier than the method in [10], it has been identified with
certain challenges. The first is its requirement to compute the projections PC and PQ in
each iteration, which depend on the geometry of the sets C and Q. These are often very
expensive operations or even not obtainable in some practical applications. The second
is in the selection of the step-size that requires information of the norm of A. This is also
generally very hard to obtain in many practice.

By defining two sub level sets C and Q as follows:

C = {s ∈ H1 : l(s) ≤ 0} and Q = {t ∈ H2 : k(t) ≤ 0}, (1.3)

l : H1 → R and k : H2 → R are weakly lower semicontinuous and convex functions and
two half-spaces at a point sn by

Cn = {s ∈ H1 : l(sn) ≤ ⟨ϕn, sn − s⟩} and Qn = {t ∈ H2 : k(Asn) ≤ ⟨φn,Asn − t⟩},
(1.4)

with ϕn ∈ ∂l(sn), φn ∈ ∂k(Asn), where C ⊆ Cn and Q ⊆ Qn for every n ≥ 0, Yang
[44] introduced the relaxed version of method (1.2). He replaced the sets C and Q by the
half-spaces Cn and Qn, respectively, so that the computations of PCn and PQn become
easier using their closed-form expressions.

On the other hand, the second challenge is still there even in the relaxed CQ algorithm
in [44]. However, many attempts were made by some researchers to overcome it. One of
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the efficient results in this regard was that of Lopez et al. [29], in which they consider
the following self-adaptively generated sequence of parameters {τn} to replace the fixed
step-size τ .

τn =
ηng(sn)

∥|∇g(sn)||2
, (1.5)

where 0 < ηn < 4 and gn is a continuously differentiable function defined by

gn(s) =
1

2
||(I − PQn

)As||2 (1.6)

and its Lipschitz continuous gradient ∇gn given by

∇gn(s) = A∗(I − PQn
)As, (1.7)

with Lipschitz constant K = ||A||2. Subsequently, many numerical algorithms with self-
adaptive step-sizes were developed to analyze solutions to problem (1.1), see [14, 25, 27,
37].

Developing fast convergence algorithms become a flourishing research area, since they are
mostly needed in many practical applications. One way to improve the speed of many
iterative methods is by incorporating the Polyak’s inertial step [33]. Since its inception,
many algorithms were developed based on the inertial extrapolation techniques, with the
numerical justifications of having faster convergence speed in several instances over their
corresponding non inertial ones (see, e.g., [3, 17, 19, 21, 34, 38, 39]). However, it has
been noticed that the loss in the monotonicity of the sequence produced by Polyak’s
inertial-type methods in relation to a point in the solution set of the problem is one of
the greatest challenges associated with these methods, which in some instances, result in
converging slower than their non inertial counterparts [5, 30]. In an attempt to curtail
the situation, Mu and Peng [31] introduced a modified version called alternated inertial
method. The identified advantage of the later inertial method over the earlier one is its
ability to recover the monotonicity of the even subsequence associated with the solution
set of the problem. The algorithm with alternated inertial step is defined in such away
that the inertial effects are only added to odd iterations. Lately, many fast convergence
algorithms were developed by various researchers based on the alternated inertial extrap-
olation techniques (see e.g., [2, 14, 28, 36, 37]).

Apart from the inertial approaches, it is immediately seen from (1.6) and (1.7) that all the
methods mentioned above for solving problem (1.1), such as those in [6, 44, 45], are hybrid
steepest descent-type methods with the directions dn = −∇gn(sn). However, as noted
from [24], the accelerated versions of these methods may be obtained, when considered
with a conjugate gradient-like direction or a three-term conjugate gradient-like direction,
which are respectively defined by

dn = −∇gn(sn) + ς(1)n dn−1 (1.8)

and

dn = −∇gn(sn) + ς(1)n dn−1 − ς(2)n xn, (1.9)

where for each i = 1, 2, ς
(i)
n ∈ [0,∞) and xn ∈ H1 is an arbitrary point. In [24], the

authors have numerically shown that the hybrid gradient method with the direction (1.9),
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converges faster than its variant with the direction (1.8) when lim
n→∞

ςin = 0, for i = 1, 2

and {xn} is bounded. In this direction, many iterative methods using conjugate gradient-
like directions for solving different nonlinear problems were suggested, see [1, 15, 20, 26].
Very recently, by combining relaxed algorithm with Polyak’s inertial term and conjugate
gradient-like direction (1.8), Che et al. [11] introduced the following algorithm for problem
(1.1).

Algorithm 1 (CZWC )

Initialization: Choose c-contraction function h : Rk → Rk and strongly positive bounded
linear operator F : Rk → Rk with coefficient δ > 0. Take γ ∈ (0, δ

c
), ϑ, δn η1, ηn ∈

(0, 1), λ1, λn ∈ [0, 1) ςn ∈ [0, 1
2
), ε > 0 and choose s0, s1 ∈ Rk.

Step 1. Set u1 = s1 + λ1(s1 − s0), If ||(I − PC1)u1 + AT (I − PQ1)Au1|| ≤ ε, terminate;
otherwise, set

d0 = −τ1∇g1(u1), with τ1 =
2η1

(
||(I − PC1)u1||2 + ||(I − PQ1)Au1||2

)
||(I − PC1)u1 +AT (I − PQ1)Au1||2

.

Set n = 1 and go to Step 2.
Step 2. Compute

τn =
2ηn

(
||(I − PCn)un||2 + ||(I − PQn)Aun||2

)
||(I − PCn)un +AT (I − PQn)Aun||2

,

dn = −τn∇gn(un) + µςndn−1,

pn = un + dn.

Step 3. Compute

sn+1 = δnγh(pn) + (1− δnF )PCnpn, set n = n+ 1 and go to Step 4.

Step 4. Set un = sn +λn(sn − sn−1). If ||(I −PCn)un +AT (I −PQn)Aun|| ≤ ε, terminate;
otherwise, go to step 2.

They formulated a theorem for Algorithm 1 and proved its strong convergence to a solu-
tion of problem (1.1) under the following conditions.
(A1) lim

n→∞
δn = 0,

∑∞
n=1 δn = ∞ and ςn = δ2n;

(A2) lim
n→∞

λn

δn
||xn − xn−1|| = 0 and 0 < lim inf

n→∞
ηn < lim sup

n→∞
ηn < 1;

(A3) {(I − PCn
)un} and {(I − PQn

)Aun} are bounded.

Although the relaxed Algorithm 1 with Polyak’s inertial step and conjugate gradient-like
direction (1.8) has achieved some remarkable performance on signal and image restora-
tion problems, see [11], it is natural to ask the question: Can we modify Algorithm 1
and incorporate the modified version with the alternated inertial step and the three-term
conjugate gradient-like direction (1.9) to improve its computational efficiency in infinite-
dimensional Hilbert spaces? Inspired and motivated by the results in [11, 24, 29, 31], we
provide answer to this question in an affirmative. Moreover, we improve the choice of
the inertial parameter λn such that the condition (A2) is not needed and this simplify
the implementations of the proposed algorithm. For the applications, we analyse the
efficiency of our proposed algorithm in solving classification problems for an interesting
real-world dataset based ℓ1-regularization and ℓ1-ℓ2 hybrid regularization models.
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2. Preliminaries

In this paper, we use sn ⇀ s (resp., sn → s) to represents the weak (resp., strong)
convergence of the sequence {sn} to s. Let H be a real Hilbert space. For all s, t ∈ H
and λ ∈ [0, 1], we use the following identities:

||s+ t||2 = ||s||2 + ||t||2 + 2 ⟨s, t⟩ (2.1)

and

||λs+ (1− λ)t||2 = λ||s||2 + (1− λ)||t||2 − λ(1− λ)||s− t||2. (2.2)

Definition 2.1. (see [4]) Let T : H → H be a map, then T is called

• K - Lipschitz continuous with K > 0, if

||Ts− Tt|| ≤ K||s− t||, ∀s, t ∈ H. (2.3)

• Nonexpansive, if K = 1 in (2.3).

• Firmly nonexpansive, if

||Ts− Tt|| ≤ ⟨s− t, T s− Tt⟩ , ∀s, t ∈ H. (2.4)

Recall that for any s ∈ H and a nonempty, closed and convex set C ⊂ H, an element
PCs ∈ C such that

||s− PCs|| ≤ ||s− t||, ∀t ∈ C, (2.5)

is uniquely determined, where PC is termed as the metric operator defining a projection
of H onto C. Additionally, ∀ s ∈ H and t ∈ C, the following are some of the properties of
the element PCs (see [18]):

⟨s− PCs, t− PCs⟩ ≤ 0. (2.6)

Note that (2.6) is equivalent to

||s− PCs||2 + ||t− PCs||2 ≤ ||s− t||2. (2.7)

Remark 2.2. It is commonly known that I−PC , where I is the identity operator, satisfies
the inequality (2.4) (see [43]).

Definition 2.3. (see [4]) Let g : H → (−∞,+∞] be a convex and proper function. Then:

• g is said to be (weakly) lower semicontinuous (w-lsc) if for any sequence {sn} ⊂ H such
that (sn ⇀ s∗) sn → s∗ as n → ∞, we have

lim inf
n→∞

g(sn) ≥ g(s∗). (2.8)

• The subdifferential of g denoted by ∂g(s) at a point s is defined by

∂g(s) := {v ∈ H : ⟨v, t− s⟩+ g(s) ≤ g(t) ∀t ∈ H}.

An element v ∈ ∂g(s) is called a subgradient of g at s.
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Lemma 2.4. (see e.g., [8, 43]) Let τ > 0 and s∗ ∈ H, then, the following statements are
equivalent.

• s∗ solves the problem (1.1)
• s∗ solves the fixed point problem

s∗ = PC(s
∗ − τA∗(I − PQ)As∗).

Lemma 2.5. (see [22]) Let {sn} be a sequence of nonnegative real numbers, such that
∀n ≥ 1,

sn+1 ≤ (1− βn)sn + βnΓn,

sn+1 ≤ sn − χn + ωn,

where βn ∈ (0, 1), χn ∈ [0,+∞) and Γn, ωn ∈ (−∞,+∞) such that
(A1)

∑∞
n=1 βn = ∞, (A2) lim

n→∞
ωn = 0 and (A3) lim

r→∞
χnr

= 0 implies that lim sup
r→∞

Γnr
≤

0, for any subsequence {nr} of {n}. Then, lim
n→∞

sn = 0.

3. Iterative method and its convergence analysis

In this section, we provide the modified self-adaptive relaxed CQ algorithm with alternated
inertial step and three-term conjugate gradient-like direction for a solution of problem
(1.1) and analyze its strong convergence in real Hilbert spaces. The proposed algorithm
in this paper is constructed by defining C, Q, Cn, Qn, gn and its gradient ∇gn as in
(1.3), (1.4), (1.6) and (1.7), respectively. Moreover, we make the following assumptions
to analysze its convergence.

Assumption 3.1. (A1) The solutions’ set of problem (1.1) is denoted by Ω ̸= ∅.
(A2) l : H1 → R and k : H2 → R are respectively convex, subdifferentiable and weakly
lower semicontinuous functions on H1 and H2.
(A3) For any s ∈ H1 and t ∈ H2, at least one subgradient ϕ ∈ ∂l(s) and φ ∈ ∂k(t) are
obtainable and the subdifferential operators ∂l and ∂k are bounded on bounded sets.

Assumption 3.2. (B1) Let λn, αn, δn, βn ∈ (0, 1) such that lim
n→∞

αn, βn = 0, lim
n→∞

δn ̸=

0 and
∑∞

n=1 βn = ∞ with lim
n→∞

αn

βn
= 0, and λn < (1−δn−1)

δn−1(1+δn−1)
.

(B2) Let ηn ∈ (0, 2
ε ) for ε > 0 such that lim inf

n→∞
ηn(2− ηn) > 0 and πn ∈ (0, 4) such that

lim inf
n→∞

πn(4− πn) > 0 .

(B3) Let ϑ > 0 and ςin ∈ [0,+∞) for each i = 1, 2 such that lim
n→∞

ςin = 0 and lim
n→∞

ς(i)n

βn
= 0.

(B4) {(I − PQ)Ahn} and {Agnhn − z} for any z ∈ Ω are bounded.
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Algorithm 2 Strong Convergence Accelerated Alternated Inertial Relaxed CQ Algorithm
(SCAAiRA)

Initialization: Take ϑ, ε, {δn}, {βn}, {αn}, {λn}, {ηn}, {πn} and for each i =
1, 2, {ςin} such that the conditions of Assumption 3.2 hold. Choose a bounded sequence
{xn} ⊂ H1, s0, s1 ∈ H1 and d0 = −∇g0(s0). Set n = 1

Step 1. Compute

un =


sn, if n = even,

sn + λn(sn − sn−1), if n = odd.

(3.1)

Step 2. Compute hn = (1−αn)(un − ετn∇gn(sn)), where the step size τn is obtain
by the relations

τn =

{
ηngn(sn)

||∇gn(sn)||2 , if ||∇gn(sn)|| ̸= 0,

0, if ||∇gn(sn)|| = 0.
(3.2)

Step 3. Compute dn+1 = 1
ϑ

(
Agnhn − hn

)
+ ς1ndn − ς2nxn and pn = hn + ϑdn+1,

where
Agn = I − θn∇gn

and

θn =

{
πngn(hn)

||∇gn(hn)||2 , if ||∇gn(hn)|| ̸= 0,

0, if ||∇gn(hn)|| = 0.
(3.3)

Step 4. Compute

mn = PCn(1− βn)pn and sn+1 = (1− δn)un + δnmn.

Set n := n+ 1 and go back to Step 1.

We first prove the following lemma.

Lemma 3.3. Let {mn}, {un} and {sn} be the sequences produced by Algorithm 2. Then,
for any z ∈ Ω, we have

||mn − z||2 ≤ (1− βn)||un − z||2 + (βn + (1− βn)αn)||z||2 + (1− αn)(1− βn)||un − sn||2

+ϑ2(1− βn)||ς(1)n dn − ς(2)n xn||2 + 2ϑ(1− βn)
⟨
Agnhn − z, ς(1)n dn − ς(2)n xn

⟩
−2εηn(2− εηn)(1− αn)(1− βn)

g2
n(sn)

||∇gn(sn)||2 − πn(4− πn)(1− βn)
g2
n(hn)

||∇gn(hn)||2

and

||mn−z||2 ≤ (1−βn)||un−z||2+
(
β2
n+(1−βn)α

2
n

)
||z||2+2αn(1−αn)(1−βn)

(
⟨un − z,−z⟩

+ετn||∇gn(sn)||||z||
)
+2βn(1−βn)

(
⟨hn − z,−z⟩+θn||∇gn(hn)||||z||+ϑ||ς(1)n dn −ς

(2)
n xn||||z||

)
+

(1− βn)(1− αn)||un − sn||2 + ϑ(1− βn)
(
2
⟨
Agnhn − z, ς

(1)
n dn − ς

(2)
n xn

⟩
+ ||ς(1)n dn − ς

(2)
n xn||2

)
.
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Proof. Observe that

pn = hn + ϑdn+1

= Agnhn + ϑς1ndn − ϑς2nxn. (3.4)

Let z ∈ Ω. Then, we have Az ∈ Qn. Consequently, ∇gn(z) = A∗(I − PQn)Az = 0.
Therefore, together with the fact that I − PQn satisfies (2.4), we have

⟨∇gn(sn), sn − z⟩ = ⟨∇gn(sn)−∇gn(z), sn − z⟩
= ⟨A∗(I − PQn)Asn −A∗(I − PQn)Az, sn − z⟩
= ⟨(I − PQn)Asn − (I − PQn)Az,Asn −Az⟩
≥ ||(I − PQn

)Asn||2

= 2gn(sn). (3.5)

Now, let an = un−ετn∇gn(sn), z ∈ Ω. Then the identity (2.1) and inequality (3.5) imply
that

||an − z||2 = ||un − ετn∇gn(sn)− z||2

= ||un − z||2 + ε2τ2n||∇gn(sn))||2 − 2ετn ⟨∇gn(sn), sn − z⟩
+ 2ετn ⟨∇gn(sn), sn − un⟩

≤ ||un − z||2 + 2ε2τ2n||∇gn(sn))||2 − 4ετngn(sn) + ||sn − un||2

= ||un − z||2 + ||un − sn||2 − 2εηn(2− εηn)
g2n(sn)

||∇gn(sn)||2
. (3.6)

Thanks to condition (B2) of Assumption 3.2, we obtain

||an − z||2 ≤ ||un − z||2 + ||un − sn||2. (3.7)

The convexity of ||.||2 and inequality (3.6) imply

||hn − z||2 = ||(1− αn)an − z||2

≤ αn||z||2 + (1− αn)||an − z||2

≤ αn||z||2 + (1− αn)
(
||un − z||2 + ||un − sn||2 − 2εηn(2− εηn)

g2n(sn)

||∇gn(sn)||2
)

= ||un − z||2 + αn||z||2 − 2εηn(2− εηn)(1− αn)
g2n(sn)

||∇gn(sn))||2

+ (1− αn)||un − sn||2. (3.8)

In a similar fashion, the identity (2.1) and inequality (3.7) provide

||hn − z||2 = α2
n||z||2 + (1− αn)

2||an − z||2 + 2αn(1− αn) ⟨an − z,−z⟩
≤ α2

n||z||2 + (1− αn)
2(||un − z||2 + ||un − sn||2)

+ 2αn(1− αn) ⟨un − ετn∇gn(sn)− z,−z⟩
= α2

n||z||2 + (1− αn)
2(||un − z||2 + ||un − sn||2)

+ 2αn(1− αn) ⟨un − z,−z⟩+ 2αn(1− αn) ⟨ετn∇gn(sn), z⟩

≤ ||un − z||2 + αn

(
αn||z||2 + 2(1− αn)

(
⟨un − z,−z⟩

+ ετn||∇gn(sn)||||z||
))

+ (1− αn)||un − sn||2. (3.9)
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In view of the definition of Agn , (3.4), (3.5), (3.8) and (3.9), one respectively finds that

||pn − z||2 = ||Agnhn + ϑς1ndn − ϑς2nxn − z||2

≤ ||hn − z||2 + ϑ2||ς(1)n dn − ς(2)n xn||2

+ 2ϑ
⟨
Agnhn − z, ς(1)n dn − ς(2)n xn

⟩
− πn(4− πn)

g2n(hn)

||∇gn(hn)||2

≤ ||un − z||2 + αn||z||2 − 2εηn(2− εηn)(1− αn)
g2n(sn)

||∇gn(sn)||2

+ (1− αn)||un − sn||2 + ϑ2||ς(1)n dn − ς(2)n xn||2

+ 2ϑ
⟨
Agnhn − z, ς(1)n dn − ς(2)n xn

⟩
− πn(4− πn)

g2n(hn)

||∇gn(hn)||2
(3.10)

and

||pn − z||2 ≤ ||hn − z||2 + ϑ2||ς(1)n dn − ς(2)n xn||2 + 2ϑ
⟨
Agnhn − z, ς(1)n dn − ς(2)n xn

⟩
≤ αn

(
αn||z||2 + 2(1− αn)

(
⟨un − z,−z⟩+ ετn||∇gn(sn)||||z||

))
+ ||un − z||2 + (1− αn)||un − sn||2 + ϑ2||ς(1)n dn − ς(2)n xn||2

+ 2ϑ
⟨
Agnhn − z, ς(1)n dn − ς(2)n xn

⟩
. (3.11)

The convexity of ||.||2, identity (2.7) and inequality (3.10) lead to obtain that

||mn − z||2 ≤ (1− βn)||un − z||2 + (βn + (1− βn)αn)||z||2

+ (1− αn)(1− βn)||un − sn||2 + ϑ2(1− βn)||ς(1)n dn − ς(2)n xn||2

+ 2ϑ(1− βn)
⟨
Agnhn − z, ς(1)n dn − ς(2)n xn

⟩
− 2εηn(2− εηn)(1− αn)(1− βn)

g2n(sn)

||∇gn(sn)||2

− πn(4− πn)(1− βn)
g2n(hn)

||∇gn(hn)||2
. (3.12)

We equivalently see from (2.1) and (3.11) that

||mn − z||2 ≤ (1− βn)||un − z||2 +
(
β2
n + (1− βn)α

2
n

)
||z||2

+ 2αn(1− αn)(1− βn)
(
⟨un − z,−z⟩+ ετn||∇gn(sn)||||z||

)
+ 2βn(1− βn)

(
⟨hn − z,−z⟩+ θn||∇gn(hn)||||z||

+ ϑ||ς(1)n dn − ς(2)n xn||||z||
)
+ (1− βn)(1− αn)||un − sn||2

+ ϑ(1− βn)
(
2
⟨
Agnhn − z, ς(1)n dn − ς(2)n xn

⟩
+ ϑ||ς(1)n dn − ς(2)n xn||2

)
. (3.13)
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In the next lemma, we establish the boundedness of the sequence {dn} produced by
Algorithm 2.

Lemma 3.4. Let {dn} be the sequence formed by Algorithm 2, then it is bounded.

Proof. It is not difficult to see from (B3) of Assumption 3.2 that for each i = 1, 2,

lim
n→∞

ς
(i)
n = 0, thus the existence of n0 ∈ N such that ς

(i)
n ≤ 1

4 , ∀ n ≥ n0 is guaranteed.

Similarly, from (B4) of Assumption 3.2, one finds that {θn∇gn(hn)} is bounded. Let us
define K as follows:

K = max
{

max
1≤j≤n0

||dj ||, sup
n∈N

||xn||,
2

ϑ
sup
n∈N

θn||∇gn(hn)||
}
.

Then, combining with the fact that {xn} is bounded, we find that K < ∞. Now, assume
that ||dn|| ≤ K for some n ≥ n0, then

||dn+1|| =
∣∣∣∣ 1
ϑ
(Agnhn − hn + ς(1)n dn − ς(2)n xn

∣∣∣∣
≤ 1

2

( 2
ϑ
θn||∇gn(hn)||

)
+ ς(1)n ||dn||+ ς(2)n ||xn||

≤ K. (3.14)

This implies that
||dn|| ≤ K, n ≥ 0,

so, we conclude that {dn} is bounded.

In what follows, we prove that the even subsequence of the sequence {sn} produced by
Algorithm 2 is bounded.

Lemma 3.5. Let {sn} be the sequence generated by Algorithm 2. Then, for any point
z ∈ Ω, the even subsequence {||s2n − z||} of {||sn − z||} is bounded.

Proof. We observe from Algorithm 2 that for any z ∈ Ω, we obtain from (3.12) that

||sn+1 − z||2 ≤ (1− δnβn)||un − z||2 + δn(βn + (1− βn)αn)||z||2 − δn(1− δn)||un −mn||2

+ δn(1− βn)(1− αn)
(
||un − sn||2 − 2εηn(2− εηn)

g2n(sn)

||∇gn(sn))||2
)

+ δn(1− βn)
(
ϑ2||ς(1)n dn − ς(2)n xn||2 − πn(4− πn)

g2n(hn)

||∇gn(hn)||2
)

+ δn2(1− βn)ϑ
⟨
Agnhn − z, ς(1)n dn − ς(2)n xn

⟩
. (3.15)
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In view of (3.1), one sees from (3.15) that

||s2n+1 − z||2 ≤ (1− δ2nβ2n)||s2n − z||2 + δ2n(β2n + (1− β2n)α2n)||z||2

+ δ2nϑ
2(1− β2n)||ς(1)2n d2n − ς

(2)
2n x2n||2

+ 2δ2nϑ(1− β2n)
⟨
Ag2nh2n − z, ς

(1)
2n d2n − ς

(2)
2n x2n

⟩
− π2n(4− π2n)δ2n(1− β2n)

g22n(h2n)

||∇g2n(h2n)||2

− 2εη2n(2− εη2n)δ2n(1− β2n)(1− α2n)
g22n(s2n)

||∇g2n(s2n))||2

− δ2n(1− δ2n)||s2n −m2n||2. (3.16)

From the definition of s2n+1 and that of u2n in (3.1), we have

||s2n+1 − s2n||2 = ||(1− δ2n)(u2n − s2n) + δ2n(m2n − s2n||2

= δ22n||m2n − s2n||2. (3.17)

Combining (3.16), (3.17) and the definition of u2n+1 in (3.1), we equivalently have

||u2n+1 − z||2 ≤ (1− δ2nβ2n)||s2n − z||2 + δ2n(1 + λ2n+1)

(
(β2n + (1− β2n)α2n)||z||2

+ ϑ(1− β2n)
(
ϑ||ς(1)2n d2n − ς

(2)
2n x2n||2 − π2n(4− π2n)

g22n(h2n)

||∇g2n(h2n)||2
)

+ 2(1− β2n)
⟨
Ag2nh2n − z, ς

(1)
2n d2n − ς

(2)
2n x2n

⟩
−
(
(1− δ2n)− λ2n+1δ2n

)
||m2n − s2n||2

− 2εη2n(2− εη2n)(1− β2n)(1− α2n)
g22n(s2n)

||∇g2n(s2n))||2

)
. (3.18)

In view of (3.17) and the definition of u2n+1 in (3.1), we find that

||u2n+1 − s2n+1||2 ≤ λ2n+1(1 + λ2n+1)δ
2
2n||m2n − s2n||2. (3.19)

Using (3.15), (3.18), (3.19) and the fact that βn, δn ∈ (0, 1) ∀n ≥ 1, we get

||s2n+2 − z||2 ≤ (1− δ2nβ2n)||s2n − z||2 + δ2n(1 + λ2n+1)
(
2(β2n + α2n)||z||2 +Φ2n

)
− 2δ2n(1 + λ2n+1)εη2n(2− εη2n)(1− β2n)(1− α2n)

g22n(s2n)

||∇g2n(s2n))||2

− 2εη2n+1(2− εη2n+1)δ2n+1(1− β2n+1)(1− α2n+1)
g22n+1(s2n+1)

||∇g2n+1(s2n+1))||2

− δ2n(1 + λ2n+1)π2n(4− π2n)(1− β2n)
g22n(h2n)

||∇g2n(h2n)||2

− π2n+1(4− π2n+1)δ2n+1(1− β2n+1)
g22n+1(h2n+1)

||∇g2n+1(h2n+1)||2

− δ2n(1 + λ2n+1)
(
(1− δ2n)− λ2n+1δ2n(1 + δ2n)

)
||m2n − s2n||2, (3.20)
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where Φ2n = ϑ2
(
||ς(1)2n d2n − ς

(2)
2n x2n||2 + ||ς(1)2n+1d2n+1 − ς

(2)
2n+1x2n+1||2

)
+ 2ϑ||ς(1)2n+1d2n+1

− ς
(2)
2n+1x2n+1||||Ag2n+1

h2n+1 − z||+ 2ϑ(1− β2n)
⟨
Ag2nh2n − z, ς

(1)
2n d2n − ς

(2)
2n x2n

⟩
.

Taking M = sup
n≥1

(1 + λ2n+1)
(
2(1 + α2n

β2n
)||z||2 + Φ2n

β2n

)
, then, together with Assumption 3.2

and inequality (3.20), we obtain

|s2n+2 − z||2 ≤ (1− δ2nβ2n)||s2n − z||2 + δ2nβ2nM

≤ max
{
||s2n − z||2,M

}
...

≤ max
{
||s0 − z||2,M

}
. (3.21)

From conditions (B1), (B3) and inequality (3.21), we obtain that the even subsequence
{||s2n−z||} with respect to a point z ∈ Ω is bounded. So that the boundedness of an even
subsequence {s2n} of {sn} generated by Algorithm 2 is obtained. Consequently, from the
inequality (3.16), one easily sees that an odd subsequence {s2n+1} of the same sequence
is also bounded.

Lemma 3.6. Let {s2n} be an even subsequence of {sn} generated by Algorithm 2. Then,
for any point z ∈ Ω, the following holds:

||s2n+2 − z||2 ≤ (1− δ2nβ2n)||s2n − z||2 + δ2nβ2nΓ2n. (3.22)

Proof. Let z ∈ Ω. Then, it follows from inequality (3.13) and Algorithm 2 that

||sn+1 − z||2 ≤ (1− δnβn)||un − z||2 + δn

((
β2
n + (1− βn)α

2
n

)
||z||2 − (1− δn)||un −mn||2

+ 2αn(1− αn)(1− βn)
(
⟨un − z,−z⟩+ ετn||∇gn(sn)||||z||

)
+ 2βn(1− βn)

(
⟨hn − z,−z⟩+ θn||∇gn(hn)||||z||

+ ϑ||ς(1)n dn − ς(2)n xn||||z||
)
+ ϑ(1− βn)

(
2
⟨
Agnhn − z, ς(1)n dn − ς(2)n xn

⟩
+ ||ς(1)n dn − ς(2)n xn||2

)
+ (1− αn)(1− βn)||un − sn||2

)
. (3.23)

Combining (3.23) and the same arguments used in deducing (3.16), we find that

||s2n+1 − z||2 ≤ (1− δ2nβ2n)||s2n − z||2 + δ2n

((
β2
2n + (1− β2n)α

2
2n

)
||z||2

+ 2α2n(1− α2n)(1− β2n)
(
⟨s2n − z,−z⟩+ ετ2n||∇g2n(s2n)||||z||

)
+ 2β2n(1− β2n)

(
⟨h2n − z,−z⟩+ θ2n||∇g2n(h2n)||||z||

+ ϑ||ς(1)2n d2n − ς
(2)
2n x2n||||z||

)
− (1− δ2n)||s2n −m2n||2

+ ϑ(1− β2n)
(
2
⟨
Ag2nh2n − z, ς

(1)
2n d2n − ς

(2)
2n x2n

⟩
+ ||ς(1)2n d2n − ς

(2)
2n x2n||2

))
. (3.24)
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Following the same lines of proof of (3.18), we equivalently obtain from (3.17) and (3.24)
that

||u2n+1 − z||2 ≤ (1− δ2nβ2n)||s2n − z||2 − δ2n(1 + λ2n+1)
(
(1− δ2n)

− λ2n+1δ2n

)
||s2n −m2n||2 + δ2n(1 + λ2n+1)

((
β2
2n + (1− β2n)α

2
2n

)
||z||2

+ 2α2n(1− α2n)(1− β2n)
(
⟨s2n − z,−z⟩+ ετ2n||∇g2n(s2n)||||z||

)
+ 2β2n(1− β2n)

(
⟨h2n − z,−z⟩+ θ2n||∇g2n(h2n)||||z||

+ ϑ||ς(1)2n d2n − ς
(2)
2n x2n||||z||

)
+ ϑ(1− β2n)

(
2
⟨
Ag2nh2n − z, ς

(1)
2n d2n − ς

(2)
2n x2n

⟩
+ ||ς(1)2n d2n − ς

(2)
2n x2n||2

))
. (3.25)

We similarly obtain from (3.19), (3.23) (3.24) and (3.25) that

||s2n+2 − z||2 ≤ (1− δ2nβ2n)||s2n − z||2 − δ2n(1 + λ2n+1)
(
(1− δ2n)

− λ2n+1δ2n(1 + δ2n)
)
||s2n −m2n||2 + δ2n(1 + λ2n+1)

(
2
(
β2
2n

+ (1− β2n)α
2
2n

)
||z||2 + 2α2n

(
(1− α2n)(1− β2n)

(
⟨s2n − z,−z⟩

+ ετ2n||∇g2n(s2n)||||z||
)

+
(
||u2n+1 − z||2 + ετ2n+1||∇g2n+1(s2n+1)||

)
||z||2

)
+ 2β2n

(
(1− β2n)

(
⟨h2n − z,−z⟩+ θ2n||∇g2n(h2n)||||z||

+ ϑ||ς(1)2n d2n − ς
(2)
2n x2n||||z||

)
+ θ2n+1||∇g2n+1(h2n+1)||||z||

+ ϑ||ς(1)2n+1d2n+1 − ς
(2)
2n+1x2n+1||||z||

)
+ ϑ

(
(1− β2n)

(
2
⟨
Ag2nh2n − z, ς

(1)
2n d2n − ς

(2)
2n x2n

⟩
+ ||ς(1)2n d2n − ς

(2)
2n x2n||2

)
+ ||ς(1)2n+1d2n+1 − ς

(2)
2n+1x2n+1||2

+ 2
⟨
Ag2n+1

h2n+1 − z, ς
(1)
2n+1d2n+1 − ς

(2)
2n+1x2n+1

⟩))
+ 2δ2n+1β2n+1(1− β2n+1) ⟨h2n+1 − z,−z⟩

≤ (1− δ2nβ2n)||s2n − z||2 + δ2nβ2nΓ2n, (3.26)

where

Γ2n = (1+λ2n+1)
βn

(
2
(
β2
2n + (1− β2n)α

2
2n

)
||z||2 +2α2n

(
(1−α2n)(1− β2n)

(
⟨s2n − z,−z⟩+

ετ2n||∇g2n(s2n)||||z||
)
+
(
||u2n+1 − z||2 + ετ2n+1||∇g2n+1(s2n+1)||

)
||z||

)
+2β2n

(
(1− β2n)(

⟨h2n − z,−z⟩+θ2n||∇g2n(h2n)||||z||+ϑ||ς(1)2n d2n−ς
(2)
2n x2n||||z||

)
+θ2n+1||∇g2n+1(h2n+1)||

||z||+ϑ||ς(1)2n+1d2n+1−ς
(2)
2n+1x2n+1||||z||

)
+ϑ

(
(1−β2n)

(
2
⟨
Ag2nh2n − z, ς

(1)
2n d2n − ς

(2)
2n x2n

⟩
+
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||ς(1)2n d2n − ς
(2)
2n x2n||2

)
+ 2

⟨
Ag2n+1

h2n+1 − z, ς
(1)
2n+1d2n+1 − ς

(2)
2n+1x2n+1

⟩
+ ||ς(1)2n+1d2n+1 − ς

(2)
2n+1x2n+1||2

))
+ 2δ2n+1

β2n+1

β2n
(1− β2n+1) ⟨h2n+1 − z,−z⟩ .

Next, we apply Lemma 2.5 to establish the strong convergence of an even subsequence
{s2n} of a sequence {sn} produced by Algorithm 2 to the minimum-norm solution of
problem (1.1) (i.e., z∗ = PΩ0).

Theorem 3.7. Let Assumptions 3.1-3.2 hold, and {s2n} be an even subsequence of the
sequence generated by Algorithm 2. Then {s2n} converges strongly to a point z∗ ∈ Ω,
where z∗ = PΩ0.

Proof. Without loss of generality, using Assumption 3.2, we can assume the existence of
p, q, t > 0 such that ∀ n ≥ 1,

2εηn(2− εηn)δn(1− βn)(1− αn) ≥ p,

πn(4− πn)δn(1− βn) ≥ q

and
δn(1 + λn+1)((1− δn)− λn+1δn(1 + δn)) ≥ t.

Consequently, we respectively obtain from (3.20) and (3.26) that

||s2n+2 − z∗||2 ≤ ||s2n − z∗||2 − χ2n + ω2n,

and

||s2n+2 − z∗||2 ≤ (1− δ2nβ2n)||s2n − z∗||2 + δ2nβ2nΓ2n, (3.27)

where

χ2n = p

(
g22n(s2n)

||∇g2n(s2n)||2
+

g22n+1(s2n+1)

||∇g2n+1(s2n+1)||2

)
+ t||m2n − s2n||2

+q

(
g22n(h2n)

||∇g2n(h2n)||2
+

g22n+1(h2n+1)

||∇g2n+1(h2n+1)||2

)
.

and
ω2n = δ2n(1 + λ2n+1)

(
2(β2n + α2n)||z||2 +Φ2n

)
.

It is easily seen from conditions (B3) and (B4) of Assumption 3.2 that lim
n→∞

ω2n = 0.

It therefore remains to prove that for every subsequence {χ2nr
} of {χ2n}, the following

holds.
lim
r→∞

χ2nr
= 0 ⇒ lim sup

r→∞
Γ2nr

≤ 0.

Now, suppose that {χ2nr} is a subsequence of {χ2n} such that lim
r→∞

χ2nr = 0, then, the

conditions of Assumption 3.2 imply that

lim
r→∞

g22nr
(s2nr )

||∇g2nr (s2nr ))||2
= 0, lim

r→∞

g22nr+1(s2nr+1)

||∇g2nr+1(s2nr+1))||2
= 0,

lim
r→∞

g22nr
(h2nr

)

||∇g2nr (h2nr ))||2
= 0, lim

r→∞

g22nr+1(h2nr+1)

||∇g2nr+1(h2nr+1))||2
= 0,

lim
r→∞

||m2nr − s2nr || = 0. (3.28)
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Now, since ∇g2nr
and ∇g2nr+1 are K-Lipschitz continuous with K = ||A||2, then for any

z ∈ Ω and following similar argument on ∇g2nr
(z) and ∇g2nr+1(z) as in (3.5), one obtains

that

||∇g2nr (s2nr )|| ≤ ||A||2||s2nr − z||, ||∇g2nr+1(s2nr+1)|| ≤ ||A||2||s2nr+1 − z||,

||∇g2nr
(h2nr

)|| ≤ ||A||2||h2nr
− z||, ||∇g2nr+1(h2nr+1)|| ≤ ||A||2||h2nr+1 − z||.

(3.29)

Thus, in view of the boundedness of {||s2nr
− z||} and (3.28), we obtain that {||s2nr+1 −

z||}, {||h2nr
− z||} and {||h2nr+1 − z||} are bounded. Consequently, the inequalities

(3.29) imply that the subsequences {∇g2nr
(s2nr

)}, {∇g2nr
(h2nr

)}, {∇g2nr+1(s2nr+1)}
and {∇g2nr+1(h2nr+1)} are bounded. Therefore, combining with (3.28), we deduce that

lim
r→∞

g2nr
(s2nr

) = 0 ⇔ lim
r→∞

||(I − PQ2nr
)As2nr

||2 = 0,

lim
r→∞

g2nr+1(s2nr+1) = 0 ⇔ lim
r→∞

||(I − PQ2nr+1
)As2nr+1||2 = 0,

lim
r→∞

g2nr
(h2nr

) = 0 ⇔ lim
r→∞

||(I − PQ2nr
)Ah2nr

||2 = 0

and

lim
r→∞

g2nr+1(h2nr+1) = 0 ⇔ lim
r→∞

||(I − PQ2nr+1
)Ah2nr+1||2 = 0. (3.30)

Now, based on the fact that the even subsequence {s2n} of {sn} is bounded, the existence
of a subsequence {s2nr

} of {s2n} converging weakly to a point s∗ is guaranteed. The
condition (A3) of Assumption 3.1 implies the existence of a constant ρ > 0 such that
||φ2nr

|| ≤ ρ. Consequently, by the definition of Q2nr
, PQ2nr

As2nr
∈ Q2nr

, and (3.30),
we have

k(As2nr
) ≤

⟨
φ2nr

,As2nr
− PQ2nr

As2nr

⟩
≤ ||φ2nr

||||As2nr
− PQ2nr

As2nr
||

≤ ρ||(I − PQ2nr
)As2nr ||2 → 0 as r → ∞. (3.31)

It is therefore not difficult to see from the weakly lower semicontuinity of k and inequality
(3.31) that

k(As∗) ≤ lim inf
r→∞

k(As2nr ) ≤ 0, (3.32)

implying that As∗ ∈ Q.

In a similar fashion, the boundedness of ∂l on bounded sets also implies the existence of
σ > 0, such that ||ϕ2nr

|| ≤ σ. From the definition of C2nr
, m2nr

∈ C2nr
and (3.28), we see

that

l(s2nr ) ≤ ⟨ϕ2nr , s2nr −m2nr ⟩
≤ ||ϕ2nr ||||s2nr −m2nr ||
≤ σ||s2nr −m2nr || → 0 as r → ∞. (3.33)
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Using similar technique followed in establishing (3.32), one sees that l(s∗) ≤ 0, showing
that s∗ ∈ C. Then, the conclusion that s∗ ∈ Ω is reached. Which generally implies that
ωw(s2n) ∈ Ω since the choice of s∗ was arbitrarily.

The following is also obtainable by combining (3.17), (3.28) and condition (B1)

lim
r→∞

||s2nr+1 − s2nr || = 0. (3.34)

In a similar fashion, combining the condition (B1), (3.2), (3.28) and (3.30), one sees that

||h2nr
− s2nr

||2 ≤ α2nr
||s2nr

||2 + ε2τ22nr
||∇g2nr

(s2nr
)||2 → 0 as r → ∞ (3.35)

and

||h2nr+1 − s2nr+1||2 ≤ (1− α2nr+1)||u2nr+1 − s2nr+1 − ετ2nr+1∇g2nr+1(s2nr+1)||2

+ α2nr+1||s2nr+1||2

≤ α2nr+1||s2nr+1||2 + 2ε2η22nr+1||∇g2nr+1(s2nr+1)||2

+ 2δ22nr
λ2
2nr+1||m2nr

− s2nr
||2 → 0 as n → ∞. (3.36)

By (3.34), (3.35), (3.36) and the metric projection property described in (2.6), we obtain
that

lim sup
r→∞

⟨s2nr
− z,−z⟩ = max

s∗∈ωw(s2nr )
⟨s∗ − z,−z⟩ ≤ 0,

lim sup
r→∞

⟨h2nr
− z,−z⟩ = max

s∗∈ωw(s2n)
⟨s∗ − z,−z⟩ ≤ 0

and

lim sup
r→∞

⟨h2nr+1 − z,−z⟩ = max
s∗∈ωw(s2n)

⟨s∗ − z,−z⟩ ≤ 0. (3.37)

Combining the results in (3.28), (3.37) and the conditions of Assumption 3.2, we have
lim sup
r→∞

Γ2nr
≤ 0. We therefore observe from Lemma 2.5 that lim

n→∞
||s2n − z∗|| = 0 and

hence, s2n → z∗ = PΩ0 as n → ∞.

Finally, using the fact that lim
n→∞

||s2n − z∗|| = 0 and (3.34), it is not difficult to see that

lim
n→∞

||s2n+1 − z∗|| = 0. We therefore conclude that the odd subsequence {s2n+1} of {sn}
produced by Algorithm 2 converges strongly to the same point z∗ ∈ Ω. Hence the whole
sequence {sn} generated by Algorithm 2 converges strongly to z∗ ∈ Ω. This complete the
proof.

4. Applications

In this part, we perform some experiments on Wisconsin breast cancer dataset, which
is a real-world classification data set to study the performance of the algorithm, that is
SCAAiRA. We used a Matlab R2023b in a PC with 12th Gen Intel(R) Core(TM)i5-124P
1.70 GHz processor and 16.0GB RAM for all the experiments.

For these experiments, we consider an efficient learning algorithm called extreme learning
machine ELM for single-hidden layer feedforward neural networks SLFNs [23], and set
M = {(sj , yj) ∈ Rk×Rm, j = 1, 2, . . . ,K} as a K distinct training data points set, where

for each input point sj =
[
sj1, sj2, . . . , sjk

]T
, yj =

[
yj1, yj2, . . . , yjm

]T
is its corresponding

 

 

Bangmod Int. J. Math. & Comp. Sci., 2025



Strong Convergence Accelerated Alternated Inertial Relaxed Algorithm 125

target. The following is the output function of a SLFNs with N number of nodes in the
hidden layer.

gj =

N∑
i=1

βifi(sj), for j = 1, 2, . . . ,K, (4.1)

where fi(sj) = F
(
⟨ωi, sj⟩+ bi

)
, F is an activation function, ωi = (ωi1, ωi2 . . . , ωik)

T and

βi = (βi1, βi2, . . . , βim)T are the input and output weight vectors, respectively and bi is a
bias. To train a SLFNs is to solve the linear system

Hβ = T, (4.2)

where the hidden layer output matrix H of order K ×N is given by

H =
[
f1(s), f2(s), . . . , fN (s)

]
,

β = (β1, β2, . . . , βN )T and T = (y1, y2, . . . , yK)
T are the output weights and the target

data matrices, respectively and the ith column of H is the ith hidden node output based

on s1, s2 . . . , sK, which is defined by fi(s) =
[
fi(s1), fi(s2), . . . , fi(sK)

]T
. To use ELM to

solve problem (4.2) is nothing but to find an optimal output weight β̂ = H†T, where H†

represents the Moore-Penrose generalized inverse of H [35].

In view of the sparsity of the output weight parameter β for some high-dimensional data,
Cao et al. [7] introduced an ℓ1-regularization approach to solve problem (4.2) based on
the following Lasso model [41].

min
β∈RN×m

{1

2
||T− Hβ||22 : ||β||1 ≤ µ

}
, (4.3)

where µ > 0 is the regularization parameter. Ye et al. [46] unified the ℓ1 and ℓ2 penalties
and introduced a model called the ℓ1-ℓ2 hybrid regularization model, which improved the
accuracy, sparsity and stability in the prediction process. Their model is given by

min
β∈RN×m

{1

2
||T− Hβ||22 : λ||β||1 + γ||β||22 ≤ µ

}
, (4.4)

where λ, γ ≥ 0 and µ > 0 are the regularization parameters. Recently, Suantai et al. [38]
considered the problem (4.3) in the form of problem (1.1) by defining C = {β ∈ RN×m :
||β||1 ≤ µ}, Q = {T} ⊆ RK×m, c(β) = ||β||1 − µ, q(x) = 1

2 ||x − T||2 and define Cn, Qn

and gn as in (1.4) and (1.6), respectively and applied their inertial relaxed CQ algorithm
to solve the problem (4.2) based on the model (4.3).

Inspired by the sparsity, stability and generalization performance of (4.4), we similarly
transform the problem (4.4) into problem (1.1) by taking C = {β ∈ RN×m : λ||β||1 +
γ||β||22 ≤ µ}, Q = {T} ⊆ RK×m and q(x) = 1

2 ||x − T||2. Moreover, it is not difficult to
see that

the function c(β) = λ||β||1 + γ||β||22 − µ is convex. We consider Cn, Qn, gn and its
gradient ∇gn as described in (1.4) and (1.6), respectively. So, our algorithm SCAAiRA
can be used to solve problem (4.2) based on the both models (4.3) and (4.4).
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To find out the performance of SCAAiRA, we used it to solve problem (4.2) based on
the models (4.3) and (4.4), which we respectively abbreviated as ℓ1-SCAAiRA and ℓ1-ℓ2-
SCAAiRA. We compare their results with Algorithm 1 in [11], abbreviated in this work
as ℓ1-CZWC and ℓ1-ℓ2-CZWC. We carried out the experiments on an interesting type
of real-world dataset called Wisconsin breast cancer dataset [42]. The instances of the
dataset are classified into two, which include 357 benign instances and 212 malignant
instances. We find more details of this dataset from [42].

We conducted all the experiments after normalizing the original data by taking s̄ji =
sji−smin

i

smax
i −smin

i
, where smax

i = max
j=1,2,...,M

(sji) and smin
i = min

j=1,2,...,M
(sji) represent the maxi-

mum and minimum of ith attributes over all the input data points sj respectively and s̄ji
represents the normalized value of sji. We use 70% of the dataset for training, 30% for
testing and two activation functions, namely, the Sigmoid and Radbas avtivation func-
tions for N = 100, 300, 500 and 700. We set s0 = s1 = randn(N ,m), xn = ones(N ,m)
and the following for the parameters.

• For ℓ1-SCAAiRA and ℓ1-ℓ2-SCAAiRA, we set ε = 1.7, ϑ = 3, λn = 2n+1
105n5+1 , βn =

1
104n+1 , αn = 1

(n+1)5 , δn = 10n
10n+1 , πn = 2, ηn = 2

ε − 0.001 and ς
(i)
n = 1

10n5+1 , for i = 1, 2.

• For ℓ1-CZWC and ℓ1-ℓ2-CZWC, we set η1 = 0.01, γ = 0.8, ε1 = 0.3, δn = 1
n+1 , εn =

1
n3 , ηn = 0.7, µ = 0.6, ςn = 0.7δ2 and f(x) = 0.9x.

We compute the prediction accuracy for each algorithm by the following relation.

Accuracy =
TP + TN

TP+ FP + TN+ FN
× 100%, (4.5)

where TP := True positive, TN := True negative, FP = False positive and FN =
False negative, and estimate their averages as well as their standard deviations (SDs).
These metrics, together with the number of iterations denoted by “Iter.” and the execu-
tion times in seconds denoted by “Time” are used to investigate the performance of each
algorithm. In all the experiments, we set ||xn+1−xn|| < 10−5 and the maximum number
of iterations as 500 to terminate the iterations for all the algorithms. As shown in Tables
1 and 2, we set the parameters µ, λ and γ according to the number of hidden neurons
and the activation function. The training and testing accuracies and times as well as the
number of iterations of all the algorithms are reported in Tables 1 and 2. Additionally, we
displayed the corresponding results of all the algorithms in Figure 1. We further display
the average accuracies and SDs of the accuracies of all the algorithms for each activation
function in Table 3.
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Table 1. Performance results of all the algorithms for N =
100, 300, 500 and 700 using Sigmoid activation function.

Act. Funct. Sigmoid

Time (s) Accuracy (%)

Nodes Algorithms µ, λ, γ Iter. Training Testing Training Testing

N = 100

ℓ1 - SCAAiRA

5, 1.0001, 0.00505

51 0.2347 0.0017 93.6782 90.7692
ℓ1-ℓ2 - SCAAiRA 55 0.3041 0.0017 95.4023 93.8462
ℓ1 - CZWC 77 0.3245 0.0022 47.7011 52.3077
ℓ1-ℓ2 - CZWC 78 0.3572 0.0021 45.977 52.3077

N = 300

ℓ1 - SCAAiRA

5, 1.001, 0.0001

28 0.1664 0.0021 97.7011 98.4615
ℓ1-ℓ2 - SCAAiRA 30 0.1952 0.0016 98.2759 98.4615
ℓ1 - CZWC 73 0.3739 0.0021 50.5747 41.5385
ℓ1-ℓ2 - CZWC 86 0.4662 0.0024 48.8506 56.9231

N = 500

ℓ1 - SCAAiRA

21, 1.001, 0.002

43 0.2296 0.003 96.5517 93.8462
ℓ1-ℓ2 - SCAAiRA 39 0.2712 0.0018 99.4253 100
ℓ1 - CZWC 78 0.5209 0.0026 64.3678 76.9231
ℓ1-ℓ2 - CZWC 66 0.4583 0.0019 48.2759 53.8462

N = 700

ℓ1 - SCAAiRA

12.2, 0.999, 0.1

60 0.4073 0.0033 92.5287 92.3077
ℓ1-ℓ2 - SCAAiRA 44 0.3915 0.0026 99.4253 98.4615
ℓ1 - CZWC 500 3.1394 0.0026 27.5862 32.3077
ℓ1-ℓ2 - CZWC 500 3.2336 0.0041 21.2644 30.7692
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Table 2. Performance results of all the algorithms for N =
100, 300, 500 and 700 using Radbas activation function.

Act. Funct. Radbas

Time (s) Accuracy (%)

Nodes Algorithms µ, λ, γ Iter. Training Testing Training Testing

N = 100

ℓ1 - SCAAiRA

12.2, 0.9999, 0.0001

199 0.7491 0.0017 95.4023 87.6923
ℓ1-ℓ2 - SCAAiRA 193 0.9254 0.0016 95.977 86.1538
ℓ1 - CZWC 89 0.4271 0.0018 50.5747 55.3846
ℓ1-ℓ2 - CZWC 86 0.4579 0.0016 49.4253 55.3846

N = 300

ℓ1 - SCAAiRA

12.2, 0.9991, 0.0001

31 0.2396 0.0018 97.1264 86.1538
ℓ1-ℓ2 - SCAAiRA 47 0.2653 0.0018 100 96.9231
ℓ1 - CZWC 63 0.3407 0.0028 63.7931 63.0769
ℓ1-ℓ2 - CZWC 58 0.3592 0.0019 37.931 35.3846

N = 500

ℓ1 - SCAAiRA

37.9651, 1.001, 0.003

30 0.2025 0.002 87.3563 84.6154
ℓ1-ℓ2 - SCAAiRA 17 0.1739 0.0023 87.931 86.1538
ℓ1 - CZWC 111 0.5944 0.0019 50 35.3846
ℓ1-ℓ2 - CZWC 112 0.6184 0.0021 50.5747 36.9231

N = 700

ℓ1 - SCAAiRA

15.5, 0.94, 0.0001

55 0.4513 0.0029 98.8506 92.3077
ℓ1-ℓ2 - SCAAiRA 80 0.5654 0.0029 99.4253 90.7692
ℓ1 - CZWC 500 3.3131 0.0049 50 41.5385
ℓ1-ℓ2 - CZWC 500 3.4549 0.0035 52.8736 47.6923

Table 3. Averages and SDs of the accuracies of all the algorithms for
all the activation functions.

Aver. Accuracy (%) SDs

Act. Funct. Algorithms Training Testing Training Testing

Sigmoid

ℓ1-SCAAiRA 95.1149 93.8462 2.4156 3.3234
ℓ1-ℓ2 - SCAAiRA 98.1322 97.6923 1.8989 2.6647
ℓ1 - CZWC 47.5574 50.7692 15.1719 19.2564
ℓ1-ℓ2 - CZWC 41.092 48.4616 13.2766 11.95

Radbas

ℓ1-SCAAiRA 94.6839 87.6923 5.0839 3.3235
ℓ1-ℓ2 - SCAAiRA 95.8333 90.00 5.5597 5.1025
ℓ1 - CZWC 53.5919 48.8462 6.8062 12.6475
ℓ1-ℓ2 - CZWC 47.7012 43.8461 6.6693 9.442

 

 

Bangmod Int. J. Math. & Comp. Sci., 2025



Strong Convergence Accelerated Alternated Inertial Relaxed Algorithm 129

 

 

(a) Sigmoid

 

 

(b) Sigmoid

 

 

(c) Radbas

 

 

(d) Radbas

Figure 1. Compare the accuracies of all the algorithms under different
N for all the activation functions.
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Remark 4.1. Based on the reported performance results of all the algorithms in Tables
1, 2 and 3, and Figure 1, we conclude the following:

(i) It is easy to see that the proposed algorithms ℓ1-SCAAiRA and ℓ1-ℓ2-SCAAiRA
considerably achieve higher training and testing accuracies in all the experiments
with fewer iterations and shorter training times in most cases than ℓ1-CZWC
and ℓ1-ℓ2-CZWC. Additionally, the SDs of both the training and testing accu-
racies of ℓ1-SCAAiRA and ℓ1-ℓ2-SCAAiRA are extremely smaller than those of
ℓ1-CZWC and ℓ1-ℓ2-CZWC for the two activation functions. These demonstrate
that ℓ1-SCAAiRA and ℓ1-ℓ2-SCAAiRA achieve better stability and generalization
performance in the experiments.

(ii) It is also observed that due to the presence of the ℓ2 penalty in ℓ1-ℓ2-SCAAiRA, it
achieves higher training and testing accuracies in most results than its correspond-
ing ℓ1-SCAAiRA, which demonstrate its ability to achieve better generalization
performance.

5. Conclusion

This work introduces a computationally efficient algorithm called strong convergence ac-
celerated alternated inertial relaxed algorithm (SCAAiRA) with three-term conjugate
gradient-like direction in finite-dimensional real Hilbert spaces. The performance results
of the proposed algorithm in solving classification problems based on the extreme learning
machine (ELM) for the Wisconsin breast cancer dataset are analyzed and compared with
the relaxed algorithm in [11]. In all the experiments, the numerical results show that the
proposed algorithm is robust, computationally efficient and achieves better generalization
performance and stability than the algorithms in [11]. It also illustrates that the proposed
algorithm achieves better accuracy based on the ℓ1-ℓ2 hybrid regularization model with
ℓ2 penalty.
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