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Abstract The work looked at how magnetic dipoles, pourosity parameters, and heat transfer affected the

flow of ferromagnetic Sutterby nanofluid on a curved stretched sheet. The effects of gyrotactic microor-

ganisms and homogeneous-heterogeneous reaction models are also considered. The momentum, energy,

and gyrotactic microorganism equations, combined with the interaction of ferromagnetic particles, pro-

vide the governing equations for the problem, which are converted into ordinary differential equations

using similarity transformations and solved using a strong homotopy analysis method (HAM). The im-

pacts of parameters on dimensionless velocity, temperature, homogeneous-heterogeneous concentration,

and motile microorganisms are graphically shown. The magnetic dipole effect and thermal radiation

parameter increased the temperature. The homogeneous-heterogeneous concentration decreased as the

homogeneous chemical reaction parameter increased, but the motile density of microorganisms decreased

as the Lewis number increased. The results were consistent with numerous previously reported results,

as predicted.
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1. Introduction

The researchers’ ongoing focus has been on non-Newtonian material flows. These
materials are primarily used in biotechnology, geophysics, pharmaceutical, chemical, and
nuclear industries, polymer solutions, cosmetics, oil storage, and paper production, among
other things. In reality, not all non-Newtonian materials with behavioral shear patterns
have a single constitutive relationship. A viscoelastic fluid is a non-Newtonian fluid with
viscous and elastic deformation. Sutterby fluid is a good example of viscoelastic fluid and
diluted polymer solutions [1, 2]. The Sutterby fluid model is specifically analogous to
shear thickening and shear dilution in the case of high aqueous polymer solutions, such
as methylcellulose, hydroxyethylcellulose, and carboxymethylcellulose [3]. Below is a list
of references that contain studies on Sutterby fluids [4–6].
The flow of porous media attracts considerable interest among scientists, given their nu-
merous kinds of real-world uses in the sector, including waste management, food storage,
oil technologies, geothermal systems, packages, porous insulation, and waste extraction
etc., the literature published a number of models that incorporate Darcy and Brinkman
and Darcy Forchheimer. [7, 8]. Researchers are nowadays interested in studying porous
media models. In the light of Darcy’s law, the increase in pressure is directly linked to
the average velocity of volume, and models developed on this concern. Viscous dissipa-
tion and thermophoresis analysis influences on the mixed convection Darcy-Forchheimer
MHD in a fluid-saturated porous medium were reported by Kishan and Maripala [9]. In
Darcy-Forchheimer porous space, Rauf et al. [10] studied the viscous fluid flow caused
by thermal radiation over a curved moving surface. In nanofluid-saturated porous media,
Jagadha and Amrutha [11] investigated the Darcy-Forchheimer mixed convection MHD
boundary layer flow with viscous dissipation. More Sutterby fluid studies are included in
the references [12–14].
Ferrofluids are a kind of magnetized fluid that are currently being studied and have an
enormous influence on technology. Numerous industrial applications are widely used, in-
cluding avionics, cooling agents, semiconductor processing, crystal processing, cooling,
filtration, plastic drawing, lasers, robotics, fiber optics, and computer peripherals. Many
scientists and researchers increased their ferrofluid study as a result of this. The study
Andersson and Valnes [15] has looked into the visual effects of magnetic dipoles on ferroflu-
ide. Hayat et al. [16] examined in the light of magnetic dipoles’ role in the ferromagnetic
Williamson fluid’s radiative flow. some important studies on ferrofluid can be found in
the references [17–19] .
Chemically reacting processes involving homogeneous-heterogeneous reactions have a wide
range of practical and potential applications, including the hydrometallurgical industry,
polymer production, ceramics, and biochemical systems, among others. Communication
between homogeneous and heterogeneous reactions is extremely complicated, and the
ability of these reactions to occur on and within the catalytic surface is extremely limited
[20, 21]. For the study of homogeneous-heterogeneous response in viscous fluid flow over a
flat surface a simple model was proposed by Merkin [22] which concluded that the surface
reaction is influenced by the leading edge of the plate and that the homogeneous reaction
is essential when the boundary layer developed. More recent work can be seen in [23–26].
Because of its indispensable uses in the polymer industry, engineering processes, and
contemporary technologies, the curve surface flow is a widely discussed topic. Examples
include melting and spinning, extruding polymers from dying materials, cooling large
metal plates in a bath, or electrolytes; producing rubber and plastic sheets; drawing wire;
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producing paper; thinning polymer sheets; winding rolls; glass fibers; liquid crystals dur-
ing the condensation process; and so forth. The cooling and imprisonment procedures
establish the ultimate amount of material. Sakiadis [27] was the first to present a flow
study due to the curved moving surface. Recently, some reseacher presented important
studies found in the references [28–30].
The practical application is that nanofluids are used to increase heat transfer in industrial
cooling and heating applications such car engines, welding equipment, and high-heat-flow
devices. They’re also used in computer and power plant cooling systems.The present
study concerned with the investigation on Darcy-Forchheimer of hydromagnetic Sutterby
ferrofluid flow over the curve-stretching surface subject to homogeneousheterogeneous
reactions model with the effect of magnetic dipole, viscous dissipation and porosity pa-
rameters which to best of my knowledge not considered in the literature. Through an
appropriate process of similarity transformations, the equations are transformed into or-
dinary differential equations and obtained the solution by HAM [31–36]. However, many
researchers like [37–40] solve their problems by HAM. The results obtained discussed
graphically.

2. Formulation

The 2D incompressible ferromagnetic Sutterby nanofluid past a stretched curved sheet
subject to homogeneousheterogeneous and chemical reactions is considered. However, the
effect of viscous dissipation and magnetic dipole are taken into account. The curvilinear
coordinates z and r are used. The surface (stretching) is curled in a radius circle R′.
Considering the linear velocity u = Az (c is constant), the sheet is stretched in and
transverse to z− direction and stretched r− direction. The magnetic field strength is
orthogonal to the flow direction (Fig. 1). The surface is soaked in a non-Darcy porous
medium. The Reynolds number (magnetic) being smaller in the control problem, the
setting ignored the induced magnetic and electrical field. However, heat Convection and
mass transfer conditions are observed. Proposed by [41] form of a simple homogeneous-
heterogeneous reaction model:

E1 + 2E2 → 3E2 rate = kcC1C
2
2 . (2.1)

With a single isothermal, on the catalytic surface first order reactions

E1 + 2E2 → 3E2 rate = krC1, (2.2)

with C1 and C2 as the chemical species concentrations of E1 and E2 respectively, kc
and kr are the rate constants. The nature of both reaction processes assumed to be
isothermal. The equations govern the flow in dimensional form based on the assumptions
[16, 22, 23, 28]

∂{(r +R′)v}
∂r

+R′ ∂u

∂z
= 0, (2.3)

u2

r +R′ =
1

ρ

∂p

∂r
, (2.4)
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Figure 1. sketch picture of the problem.

ρ

(
v
∂u

∂r
+

R′u

r +R′
∂u

∂z
+

uv

r +R′

)
= ue

due

dz
+

R′

r +R′
∂p

∂z

+ µ

(
∂2u

∂r2
− u

(r +R′)2
+

1

r +R′
∂u

∂r

)
− k0

(
2u

(r +R′)2
∂3u

∂z∂r2
+

2v

r +R′
∂3u

∂r3
+

R′

r +R′
∂u

∂z

∂2u

∂r2
− 2R′

(r +R′)2
∂u

∂r

∂2u

∂r∂z

)
− µS1

k∗o
u− ρCbS1√

k∗o
u2 + µoM

∂H

∂z
, (2.5)

(ρCp)

(
R′u

r +R′
∂T

∂z
+ v

∂T

∂r

)
=

kT
r +R′

[
∂T

∂r
+ (r +R′)

∂2T

∂r2

]
+

(
u
∂H

∂z
+ v

∂H

∂r

)
µoT

∂M

∂T
− kT

r +R′

(
∂qr
∂r

(r +R′)

)
, (2.6)

R′

r +R′u
∂C1

∂z
+ v

∂C1

∂r
= DE1

∂2C1

∂r2
− kcC1C2, (2.7)

R′

r +R′u
∂C2

∂z
+ v

∂C2

∂r
= DE2

∂2C2

∂r2
+ kcC1C2, (2.8)

(
R′

r +R′

)
u
∂N

∂z
+ v

∂N

∂r
+

bWc

Cw − C∞

∂
(
N ∂C

∂r

)
∂r

= Dm
∂2N

∂r2
, (2.9)
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with boundary conditions

u = Az = Uw(z), v = 0, −K
∂T

∂r
= h1

(
Tw − T

)
, DE1

∂C1

∂r
= krC1,

DE2

∂C2

∂r
= −krC1, N = Nw at r = 0,

u → ue = 0,
∂u

∂r
→ 0, v → 0, T → T∞, C1 → C0, C2 → 0, (2.10)

N → N∞ as r → ∞, (2.11)

where components velocity are (u,v) in the z− direction(radial) and r− direction(transverse),
diffusion coefficient DE1 and DE2 , k0 is the short memory coefficient, fluid thermal con-
ductivity kT , fluid density ρ, dynamic viscosity µ, fluid electrical conductivity σ, fluid
heat capacitance (ρcp), b chemotaxis, S1 porosity of porous medium, first order chemical
reaction parameter Kc, magnetic permeability µo, gyrotactic Speed cell Wc, Microorgan-
ism diffusion Dm, T the temperature, N the gyrotactic Microorganism and T∞, and N∞
stand for the temperature, and Density of microorganisms at infinity respectively.

2.1. Magnetic Dipole

The magnetic scalar potential Φ can identify magnetic dipole effects shown in eq.
(2.12). Because of the magnetic dipole, the properties of the magnetic field affect the flow
of ferrofluid.

Φ =
γ

2π

z

z2 + (r + c)2
(2.12)

at the source, magnetic field strength represent by γ. With Hz and Hr taking as the
components of magnetic field shown in Eqs. (2.13) and (2.14).

Hz = −∂Φ

∂z
=

γ

2π

z2 − (r + c)2

[z2 + (r + c)2]2
, (2.13)

Hr = −∂Φ

∂r
=

γ

2π

2z(r + c)

[z2 + (r + c)2]2
. (2.14)

The magnetic body strength is stated at (2.15) because it is typically proportional to the
elements of the magnetic field gradient.

H =
√

H2
z +H2

r . (2.15)

The approximate linear form of magnetization M by temperature T given in eq. (2.16)

M = K1(T − T∞). (2.16)

A ferromagnetic coefficient is identified by the value of K1, see Figure 1.
Using the transformations [10] below

u = Azf ′(ζ), v = −
(

R′

r +R′

)√
Aνf(ζ), p = ρA2z2p(ζ), ζ = r

√
A

ν
,

θ(ζ) =
T − T∞

Tw − T∞
, C1 = c0ϕ1(ζ), C1 = c0ϕ1(ζ), χ(ζ) =

N −N∞

Nw −N∞
. (2.17)

p′ =
f ′2

ζ + α1
, (2.18)
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f ′′′ +
1

ζ + α1
f ′′ − 1

(ζ + α1)2
f ′ +

(
α1

ζ + α1

)[
ff ′′ − f ′2 +

1

α1
f ′f

]
− α

[
(2 + α1)

(ζ + α1)2
f ′f ′′′ − 2α1

(ζ + α1)2
(ff ′′′′ − f ′′2)

]
− P1f

′ − Lif
′2

+
2β

(ζ + d)4
θ + 2

(
α1

ζ + α1

)
p = 0, (2.19)

(
1 +Rd

)(
θ′′ +

θ′

(ζ + α1)

)
+ Pr

(
α1

ζ + α1

)
fθ′ +

2βλ(θ − ϵ)f

(ζ + d)3

+ βλ(θ − ϵ)

[
2f ′

(ζ + d)4
+

4f

(ζ + d)5

]
= 0, (2.20)

ϕ′′
1 + Sc

α1

(ζ + α1)
fϕ′

1 − ScKcϕ1ϕ
2
2 = 0, (2.21)

δϕ′′
2 + Sc

α1

(ζ + α1)
fϕ′

2 − ScKcϕ1ϕ
2
2 = 0, (2.22)

χ′′ + Pe
[
ϕ′χ′ + ϕ′′χ+Nδϕ

′′]+ Le

(
α1

ζ + α1

)
fχ′ = 0. (2.23)

When the pressure term is removed from integrate (2.18) in order to obtain p and sub-
stitute it, (2.19) becomes

f ′′′ +
1

ζ + α1
f ′′ − 1

(ζ + α1)2
f ′ +

(
α1

ζ + α1

)[
ff ′′ − f ′2 +

1

α1
f ′f

]
+Def ′′f ′′′

− P1f
′ − Lif

′2 +
2β

(ζ + d)4
θ +

(
α1

(ζ + α1)2

)
(2ff ′′ − f ′2) = 0, (2.24)

given the boundary conditions below

f ′(0) = 1, f(0) = 0, f(∞) = 0, f ′′(∞) = 0, (2.25)

θ′(0) = −Bi1[1− θ(0)], θ(∞) = 0, (2.26)

ϕ′
1(0) = krϕ1(0), ϕ

′
2(0) = −krϕ1(0), ϕ1(∞) = 1, ϕ2(∞) = 0, (2.27)

χ′(0) = 1, χ(∞) = 0. (2.28)

The assumption that the diffusion coefficients DE1
and DE2

are equivalent arises from the
expectation in many applications that the diffusion coefficients E1 and E2 of the chemical
species will be of similar sizes. Using the assumption that δ = 1, the Chaudhar and
Merkin notion is applied [41] to produce the following equation

ϕ1(ζ) + ϕ2(ζ) = 1. (2.29)

Hence equations (2.21) and (2.22) finally becomes

ϕ′′
1 + Scfϕ′

1 −Kcϕ1(1− ϕ1)
2 = 0, (2.30)

with boundary equation as

ϕ′
1(0) = Krϕ1(0), ϕ1(∞) = 1, (2.31)
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where α1 curvature parameter, d dimensionless distance, α is the viscoelastic parameter,
heat dissipation parameter λ, β the ferrohydrodynamic interaction, ε the curie tempera-
ture, Prandtl number Pr, radiation parameter Rd, the ratio of the diffusion coefficients
is δ, De is Deborah number, the Schmidt number Sc, porosity parameter p1, local iner-
tia parameter is Li, Kc is the strength of the homogeneous reaction measure, Kr is the
strength of heterogeneous reaction measure, Pe is Peclet number, Lewis number Le and
thermal Biot number Bi1 quantities are given by

α1 = R′
√

A

ν
, p1 =

µS1

ρAk∗o
, α =

k0A

ρν
, Li =

CbS1√
k∗o

,

β =
γµoK1ρ(Tw − T∞)

2πµ2
, P r =

µCp

kT
, Le =

ν

Dn
, λ =

Aµ2

ρ(Tw − T∞)kT
,

d =

√
Ac2

ν
,De =

mE2(Az)2

ν
, Rd =

16σ∗T 3
∞

3kk∗
,

Sc =
ν

DE1

, P e =
bWc

Dn
, Nδ =

N∞

Nw −N∞
, Bi1 =

h1

kT

√
ν

A
,

Kr = krRe−
1
2 /DE1

, Kc =
kcc

2
0

A
, Re =

A

ν
, ϵ =

T∞

T∞ − Tw
. (2.32)

In accordance with this, the intriguing physical quantities such as skin friction, local
Nusselt, Sherwood, and density numbers are calculated below

Cf =
τrz

ρ(Az)2
, Nuz =

−zqw
kT (Tw − T∞)

, Shz =
−zqm

D(Cw − C∞)

Snz =
−zqn

Dm(Nw −N∞)
(2.33)

τrz =

(
µur −

k0
ρ

(
uuzr − 2uruz

))
|r=0, qw = −k∗(Tr − qr)|r=0,

qm = −DCr|r=0 qn = DmNr|r=0 (2.34)

Cf =
2

Re0.5x

f ′′(0) (1 + αf ′(0)) , Nu = −Re0.5x (1 +Rd)θ′(0),

Sn = −Re0.5x χ′(0) (2.35)

3. HAM Solutions methodology

The following are some of the benefits of using the Homotopy Analysis Method (HAM)
to solve nonlinear equations: flexibility, convergence and independence. The steps are as
follows: Taking the initial guesses and the linear operators as

f0(ζ) = (1− e−ζ), θ0(ζ) +
Bi1

1 +Bi1
e−ζ , ϕ0(ζ) + e−ζ , χ0 = e−ζ . (3.1)

the properties below satisfied by equation (3.1)

Lf (Q1 +Q2e
ζ +Q3e

−ζ) = 0, Lθ(Q4e
ζ +Q5e

−ζ) = 0,

Lϕ(Q6e
ζ +Q7e

−ζ) = 0, Lχ(Q8e
ζ +Q9e

−ζ) = 0, (3.2)
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with Qi(i = 1, ..., 9, ) are arbitrary constants.
The problem’s related zero order form is

(1− q)L0[f(ζ; q)− f0(ζ)] = qhfNf [f(ζ, q), θ(ζ, q)],

(1− q)L0[θ(ζ; q)− θ0(ζ)] = qhfNf [θ(ζ, q), f(ζ, q)],

(1− q)L0[ϕ(ζ, q)− ϕ0(ζ)] = qhfNf [ϕ1(ζ, q), f(ζ, q)],

(1− q)L0[χ(ζ, q)− χ0(ζ)] = qhfNf [χ(ζ, q), ϕ1(ζ, q), f(ζ, q)], (3.3)

f(0, q) = 0, f ′(0, q) = 1, f ′(∞, q) = A, θ′(0, q) = −Bi1(1− θ(0, q)),

θ(∞, q) = 0, ϕ′
1(0, q) = Krϕ1(0, q), ϕ1(∞, q) = 0 χ′(0, q) = 1, χ(∞; q) = 0 (3.4)

Nf [f(ζ, q), θ(ζ, q)] =
∂3f(ζ, q)

∂ζ3
+

1

ζ + α1

∂2f(ζ, q)

∂ζ2
− 1

(ζ + α1)2
∂f(ζ, q)

∂ζ

+

(
α1

ζ + α1

)[
f(ζ, q)

∂2f(ζ, q)

∂ζ2
−
(
∂f(ζ, q)

∂ζ

)2

+
1

α1

∂f(ζ, q)

∂ζ
f(ζ, q)

]
(3.5)

+De
∂2f(ζ, q)

∂ζ2
∂3f(ζ, q)

∂ζ3
− P1

∂f(ζ, q)

∂ζ
− Li

(
∂f(ζ, q)

∂ζ

)2

+
2β

(ζ + d)4
θ(ζ, q) +

(
α1

(ζ + α1)2

)(
2f(ζ, q)

∂2f(ζ, q)

∂ζ2
−
(
∂f(ζ, q)

∂ζ

)2)
,

Nθ[θ(ζ, q), f(ζ, q)] =
(
1 +Rd

)(∂2θ(ζ, q)

∂ζ2
+

1

(ζ + α1)

∂θ(ζ, q)

∂ζ

)
+ Pr

(
α1

ζ + α1

)
f(ζ, q)

θ(ζ, q)

∂ζ
+

2βλ(θ(ζ, q)− ϵ)f(ζ, q)

(ζ + d)3

+ βλ(θ(ζ, q)− ϵ)

[
2

(ζ + d)4
∂f(ζ, q)

∂ζ
+

4f(ζ, q)

(ζ + d)5

]
, (3.6)

Nϕ1
[ϕ1(ζ, q), f(ζ, q)] =

∂2ϕ(ζ, q)

∂ζ2
+Scf(ζ, q)

∂ϕ1(ζ, q)

∂ζ
−Kcϕ1(ζ, q)(1−ϕ1(ζ, q))

2,

(3.7)

Nχ[χ(ζ, q)] =
∂2χ(ζ, q)

∂ζ2
+ Pe

[
∂ϕ(ζ, q)

∂ζ

∂χ(ζ, q)

∂ζ
+

∂2ϕ1(ζ, q)

∂ζ2
χ(ζ, q) +Nδ

∂2ϕ1(ζ, q)

∂ζ2

]
+ Le

(
α1

ζ + α1

)
f(ζ, q)

∂ϕ1(ζ, q)

∂ζ
,

(3.8)

where q ∈ [0, 1] be the embedding parameter and Nf , Nθ, Nϕ1
and Nχ are operators

(nonlinear).
The m order problems deformation

Lf [fm(ζ, q)− ηmfm−1(ζ)] = hfRf,m(ζ), (3.9)

Lθ[θm(ζ, q)− ηmθm−1(ζ)] = hθRθ,m(ζ), (3.10)
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Lϕ1
[ϕm(ζ, q)− ηmϕm−1(ζ)] = hϕ1

Rϕ,m(ζ), (3.11)

Lχ[χm(ζ, q)− ηmχm−1(ζ)] = hχRχ,m(ζ), (3.12)

fm(0) = f ′
m(0) = f ′

m(∞) = 0,

θ′m(0)−Bi1θm(0) = θm(∞) = 0,

ϕ′
1m(0) = Krϕ1m(0), ϕ1m(∞) = 0,

χ′
m(0) = χm(0) = χm(∞) = 0, (3.13)

ηm =

{
0, if m ≤ 1,

1, if m > 1,
(3.14)

Rm
f (ζ) = f ′′′

m−1 +
1

ζ + α1
f ′′
m−1 −

1

(ζ + α1)2
f ′
m−1

+

(
α1

ζ + α1

)[m−1∑
r=0

fm−1−rf
′′
r −

(m−1∑
r=0

f ′
m−1−rf

′
r

)2

+
1

α1

m−1∑
r=0

fm−1−rf
′
r

]

+De

m−1∑
r=0

f ′′
m−1−rf

′′′
r − P1f

′
m−1 − Li

(m−1∑
r=0

f ′
m−1−rf

′
r

)2

+
2β

(ζ + d)4
θm−1

+

(
α1

(ζ + α1)2

)(
2

m−1∑
r=0

fm−1−rf
′′
r −

(m−1∑
r=0

f ′
m−1−rf

′
r

)2)
, (3.15)

Rm
θ (ζ) =

(
1 +Rd

)(
θ′′m−1 +

θ′m−1

(ζ + α1)

)
+ Pr

(
α1

ζ + α1

)m−1∑
r=0

fm−1−rθ
′
r

2βλ(θm−1 − ϵ)fm−1

(ζ + d)3
+ βλ(θm−1 − ϵ)

[
2f ′

m−1

(ζ + d)4
+

4fm−1

(ζ + d)5

]
, (3.16)

Rm
ϕ1
(ζ) = ϕ′′

1(m−1) +
ϕ′
1(m−1)

(ζ + α1)
+

(
α1

ζ + α1

)
Sc

m−1∑
r=0

fm−1−rϕ
′
r − δScϕ1(m−1),

(3.17)

Rm
χ (ζ) = χ′′

m−1 + Pe

[
m−1∑
r=0

ϕ′
(1m−1−r)χ

′
r +

m−1∑
r=0

ϕ′′
1(m−1−r)χr +Nδϕ

′′
1(m−1)

]

+ Le

(
α1

ζ + α1

)m−1∑
r=0

fm−1−rχ
′
r. (3.18)
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By solving the m order the general solutions are given by

fm(ζ) = f∗
m(ζ) +Q1 +Q2e

ζ +Q3e
−ζ , (3.19)

θm(ζ) = θ∗m(ζ) +Q4e
ζ +Q5e

−ζ , (3.20)

ϕ1m(ζ) = ϕ∗
1m(ζ) +Q6e

ζ +Q7e
−ζ , (3.21)

χm(ζ) = χ∗
m(ζ) +Q8e

ζ +Q9e
−ζ , (3.22)

where (f∗
m(ζ), θ∗m(ζ), ϕ∗

1m(ζ), χ∗
m(ζ)) are special solutions.

4. Results and Discussion
Figure 2 is used to investigate the impact of α1 on the velocity profile. The figure

shows how the fluid’s velocity rises when the parameter α1 increases. The efficiency of the
ferromagnetic hydrodynamic interaction parameter β in the velocity profile is examined
in Figure 3. In this case, the parameter β increase make the velocity to the decreasing
behavior. In general, when β grows and the velocity falls, the resistance force classed
as the Lorentz force increases. The Deborah number De on velocity function, which
sheds light on the viscoelasticity properties of the Sutterby nanomaterial, is depicted in
Figure 4. In this case, an increase in De causes Sutterby’s flow velocity to increase.
Fluid velocity increases when the hydrodynamic boundary layer thickness increases due
to faster nanofluid motions. Figure 5 provides an explanation the characteristics of the
porosity parameter p1. Because of the current porous medium’s ability to slow down the
field of flow, there is an increase in shear stress on the curved surface. This causes the
velocity profile to trend downward and increases p1 values.
An analysis of the impact of α1 on the velocity profile is presented in Figure 6. The
velocity component improves with a greater value of α1, as the image illustrates. Utilizing
Figure 7, the influence of β on temperature is investigated. Here, the temperature rises as
the β value rises. The parameter ε on the temperature properties are displayed in Figure
8. In the bigger value of ε, the temperature drops. Greater ε corresponds to increased
fluid thermal conductivity, the temperature rises as a result of the additional heat being
transferred from the surface into the liquid.The impact of the parameter λ on temperature
is depicted in Figure 9. At this point the value of λ increases as the temperature drops.
The temperature is physically lowered in the greater value of λ by the fluid’s thermal
conductivity. The effect of the Bi1 on temperature profile is displayed in Figure 10. It
is observed that Bi1 value indicates an increase in temperature. In other words, Bi1
is directly proportional to the coefficient of heat transfer, which is larger value for Bi1,
and depends on it. Temperature changes with rising Prandtl number Pr are shown in
Figure 11. As the parameter Pr increases, the Sutterby nanofluid’s temperature drops.
Thermal diffusivity is referred to by the Prandtl number in physics. The lower thermal
diffusivity, or larger Pr, is what breaks down the temperature. As can be seen in Figure
12, the fluid’s temperature rises as the radiation parameterRd rises. In this instance, as
Rd increases, the absorption coefficient falls, increasing the rate of radiative heat transfer.
To examine the effect of the Kc homogeneous reaction parameter, refer to Figure 13. It is
observed that there is a drop in fluid concentration with increasing Kc. The effect of the
heterogeneous reaction parameterKr on the concentration profile is depicted in Figure 14.
An increase in Kr values corresponds to an increase in fluid concentration. The impact
of Schmidt number Sc on the concentration profile is depicted in Figure 15. An increase
in the Schmidt number led to an increase in particle concentration.The impact of Peclet
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number Pe on the microorganism profile is depicted in Figure 16. A direct correlation
has been observed between the increased Pe and the microorganism’s better density. The
impact of Lewis number Le on the microorganism profile is depicted in Figure 17. Given
that the mass diffusion and the Lewis number were inversely related, the concentration
distribution shrank.

 

 

Figure 2. Impact of α1 on f ′(ζ).

 

 

Figure 3. Impact of β on f ′(ζ).
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Figure 4. Impact of De on f ′(ζ).

 

 

Figure 5. Impact of P1 on f ′(ζ).
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Figure 6. Impact of α1 on θ(ζ).

 

 

Figure 7. Impact of β on θ(ζ).
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Figure 8. Impact of ε on θ(ζ).

 

 

Figure 9. Impact of λ on θ(ζ).
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Figure 10. Impact of Bi1 on θ(ζ).

 

 

Figure 11. Impact of Pr on θ(ζ).
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Figure 12. Impact of Rd on θ(ζ).

 

 

Figure 13. Impact of Kc on ϕ1(ζ).
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Figure 14. Impact of Kr on ϕ1(ζ).

 

 

Figure 15. Impact of Sc on ϕ1(ζ).
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Figure 16. Impact of Pe on χ(ζ).

 

 

Figure 17. Impact of Le on χ(ζ).

The microorganism transfer rate increases for some values of some parameters, as
shown in Table 1.
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Table 1. Values are computed of −χ′(0) for various values of Pe, Le, Sc.

Pe Le Sc −χ′(0)

0.1 0.2 0.3 0.28315

0.2 0.27328

0.3 0.37022

0.5 0.33001

0.7 0.32403

0.6 0.61957

0.9 0.85330

1.2 1.14321

5. Conclusion

The hydromagnetic flow of Sutterby nanofluid by Darcy-Forchheimer over a curved
stretched sheet with thermal radiation and the presence of magnetic dipoles was studied
using a mathematical model of homogeneous heterogeneous chemical processes. Fol-
lowing similarity modifications, the resulting non-dimensional differential equations were
obtained, and the outcomes were provided numerically. The following are the primary
points:

• The velocity has increased with the curvature parameters α1,, De, and λ and
decreased with the rising ferromagnetic parameters β and p1.

• The temperature rises as α1, β, and Rd grow and falls as Pr increases.
• Larger heterogeneous-reaction Kr and Schmidt at Sc result in a higher concen-

tration rate, but larger homogeneous-reaction Kc represents a decrease in the
concentration rate.

• The density of the micro-organism increases with Pe and decreases with Le.
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